Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dyslexia: risk gene is identified

04.11.2005


In examinations of children with serious reading and writing difficulties German and Swedish researchers have now succeeded in demonstrating for the first time the contribution of a specific gene.



About five million Germans have serious learning difficulties when it comes to reading and writing. It is frequently the case that several members of the same family are affected. So hereditary disposition seems to play an important role in the occurrence of dyslexia. Scientists at the universities of Marburg, Würzburg and Bonn have been working on this question together with Swedish colleagues from the Karolinska Institute in Stockholm. In examinations of German children with serious reading and writing difficulties they have now succeeded in demonstrating for the first time the contribution of a specific gene. Precisely how it contributes to the disorder remains unclear. It is thought that the genes may affect the migration of nerve cells in the brain as it evolves. The results will be published in the January edition of the American Journal of Human Genetics, but have already been made available online (http://www.journals.uchicago.edu/AJHG).

For several years child and youth psychologists at the universities of Marburg and Würzburg searched for families in which at least one child was considered dyslexic. "We then analysed blood samples taken from the families to identify candidate genes – and in the end we found the right one," explains the scientist who headed this part of the study from Marburg, Privatdozent Dr. Gerd Schulte-Körne.


The gene is located in the region of Chromosome 6, which had already been indicated by scientists from the USA and England in connection with reading and spelling disabilities. But the German-Swedish team has gone further and identified within this region a single gene which, as found among German children, is apparently an important factor in the emergence of dyslexia. "Known as the DCDC2 gene, it appears to affect the migration of nerve cells in the developing brain," says Professor Dr. Markus Nöthen from the Life and Brain Centre at Bonn University. Professor Nöthen and his team are in charge of the molecular work within the project.

Changes in the DCDC2 gene were frequently found among dyslexics. The altered gene variant often occurred among children with reading and writing difficulties. The gene appears to have a strong linkage with the processing of speech information when writing. The researchers now want to gain a better understanding of DCDC2 and discover in detail why children with this altered gene have a higher risk of dyslexia.

On the German side the project is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) and the Alfried Krupp von Bohlen and Halbach Foundation. The research group at the Karolinska Institute is supported by the Swedish Research Council, the Academy of Finland, the Sigrid Jusélius Foundation, and the Päivikki and Sakari Sohlberg Foundation. Professor Nöthen occupies the Alfried Krupp von Bohlen and Halbach Chair for Genetic Medicine. The Life & Brain Centre is a new research facility at the Bonn University Clinic which uses state-of-the-art technologies to conduct application-oriented aetiology.

About five per cent of all Germans are dyslexic. Despite good intelligence levels and regular school attendance they have great difficulties in reading texts and expressing themselves in writing. For many children the nature of their reading and spelling disability is not recognised until it is too late, i.e. when they are having psychological problems due to their learning difficulties. They can develop school-related anxieties and depression, even with thoughts of suicide.

Prof. Dr. Markus Nöthen | alfa
Further information:
http://www.journals.uchicago.edu/AJHG
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>