Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show how thinking can harm brain cells

03.11.2005


Preconditioning could prevent injury to dendrites in neurologic diseases



Scientists at the University of Rochester Medical Center have targeted a new culprit and method of attack on neurologic functions in diseases such as Alzheimer’s and dementia associated with HIV.

In an article in the Nov. 1 issue of The Journal of Clinical Investigation, the Rochester scientists describe a new mechanism by which brain cells can be damaged during chronic neurodegenerative diseases. When inflammation occurs in the brain, nerve impulses that are passed between cells during routine activities like learning and memory can become toxic. Instead of triggering the formation of memories, these impulses can inflict injury on neurons and disrupt neurologic function.


Understanding this mechanism could provide a new path for drugs to treat the diseases. Working in collaboration with researchers at the University of California at San Diego, the Rochester scientists propose a strategy of chemical preconditioning to induce adaptations in nerve cells that would enable the cells to better withstand toxic attacks, prevent injury, and preserve function.

"Preconditioning would allow the nervous system to experience stress and become more resistant to future encounters with stress and the damage it can trigger," said Harris A. Gelbard, M.D., professor of Neurology at the University of Rochester Medical Center and the research project’s principal investigator.

A long-standing villain in neurodegenerative disease has been glutamate, an amino acid that normally acts as a neurotransmitter. Excess glutamate, however, can overly excite neurons, causing damage and death – a process called excitotoxicity. Some drugs developed for the treatment of Alzheimer’s disease, for example, are designed to lower the production of glutamate or block its transmission to reduce excitotoxic injury.

"But just blocking glutamate doesn’t seem to work efficiently in neurodegenerative diseases with inflammation," said Gelbard. "We reconsidered how excitotoxicity actually damages the nervous system in a functional way."

The scientists focused on dendrites, the crooked branches of neurons that carry impulses toward the body of the nerve cell, and synapses, the places where impulses pass from neuron to neuron. Injury to dendrites – characterized by swelling or beading, loss of dendrite spines, and reduction in size – is seen in HIV-1-associated dementia and Alzheimer’s.

In laboratory studies, brain cells and slices were exposed to platelet-activating factor, or PAF, a compound that promotes inflammation and plays many roles in the brain. It can be produced by neurons and takes part in the working of synapses, including activity associated with learning and remembering. It also is produced by immune cells during inflammation. The amount of PAF in the brain increases dramatically in HIV-1-associated dementia and other neurodegenerative diseases.

"We found that disease makes dendrites more vulnerable to excitotoxicity," said Matthew J. Bellizzi, a researcher and student in the M.D./Ph.D. program at the Medical Center and corresponding author of the journal article. "We also found that damage to the dendrites may not require abnormal glutamate exposure."

The lab studies showed that elevated levels of PAF promoted beading on dendrites and injury to synapses following bursts of synaptic activity similar to those thought to be involved in learning and memory.

"This mechanism does not just apply to HIV," Gelbard said. "It applies to Alzheimer’s, multiple sclerosis, Parkinson’s and any neurodegenerative diseases that have synaptic dysfunction with inflammation, which is virtually all of them."

In lab studies, brain cells were treated with diazoxide, a drug investigated for use in ischemic heart disease and strokes. Pretreatment before exposure to PAF prevented dendritic beading and preserved synaptic functions, the studies showed.

"Stressing the cells with small amounts could trigger protective genes and induce adaptations that will make the dendrites more able to withstand insults," Bellizzi said.

Diazoxide is not the only drug that would work, and others might be better, the researchers said. Memantine, a drug that blocks glutamate receptors, is used in the treatment of Alzheimer’s. Chemical preconditioning could represent an alternate or complementary strategy.

"Preconditioning to protect the synapse is likely to be more important in the early and middle phases of neurodegenerative diseases than simply preserving the cell body," Gelbard said.

Michael Wentzel | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>