Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new method to help find deadly malaria parasite’s Achilles heel

03.11.2005


The most deadly malaria parasite has protein ’wiring’ that differs markedly from the cellular circuitry of other higher organisms, a finding which could lead to the development of antimalarial drugs that exploit that difference

Researchers at UCSD have discovered that the single-cell parasite responsible for an estimated 1 million deaths per year worldwide from malaria has protein "wiring" that differs markedly from the cellular circuitry of other higher organisms, a finding which could lead to the development of antimalarial drugs that exploit that difference.

The scientists will report in the Nov. 3 issue of Nature a comparison of newly discovered protein-interactions in Plasmodium falciparum with protein interactions reported earlier in four other well studied model organisms -- yeast, a nematode worm, the fruit fly, and a bacterium that causes digestive-tract ulcers in humans. The authors of the study, Trey Ideker, a professor of bioengineering at UCSD’s Jacobs School of Engineering, and two graduate students, Silpa Suthram and Taylor Sittler, said the malaria parasite’s protein interactions "set it apart from other species."



"We’ve known since the Plasmodium genome was sequenced three years ago that 40 percent of its 5,300 proteins are significantly similar, or homologous, to proteins in other eukaryotes, but until now we didn’t know that the malaria parasite assembles those proteins so uniquely," said Ideker. "Since our earlier research showed that yeast, worm, and fly have hundreds of both conserved proteins and protein interactions, we didn’t initially believe our own analysis, which showed that there are only three Plasmodium protein interactions in common with yeast and none in common with the other species studied." The World Health Organization warns that malaria is a growing threat to health worldwide, particularly in poor countries. No malaria vaccine has been developed, and once powerful antimalarial drugs are less and less effective because Plasmodium falciparum has developed resistance to those drugs. Even mosquitoes that transmit malaria are developing resistance to the most commonly used insecticides.

"The demonstration that the Plasmodium protein network differs significantly from those of several model organisms is an intriguing result that could lead to the identification of novel drug targets for fighting malaria," said John Whitmarsh, acting director of the Center for Bioinformatics and Computational Biology at the National Institute of General Medical Sciences, which partially funded the work. "Ideker and his team have demonstrated the effectiveness of a computational approach based on mathematics for understanding complex biological interactions."

Researchers studying protein expression under controlled laboratory conditions have been slowed because techniques designed for other organisms work poorly with Plasmodium because 80 percent of its genome is comprised of only two of the four building blocks of DNA.

Stanly Fields, a professor of genomic sciences at the University of Washington who invented an ingenious way to identify pairs of proteins that physically interact with one another, modified his technique and added special culture conditions to enable his group to study Plasmodium. Fields’s team and collaborators at Prolexys Pharmaceuticals of Salt Lake City, UT, discovered 2,846 interactions involving 1,312 Plasmodium falciparum proteins. The team provided data on those interactions to Ideker’s group earlier and also reported the results in the Nov. 3 issue of Nature.

Ideker’s team applied a rigorous statistical analysis approach to the Fields group’s Plasmodium data, focusing on interacting proteins that have homologs in other species. While the genomes of hundreds of species are filled with homologous proteins, Ideker and his colleagues are eager to understand how they interact with one another as part of a new approach to help in the design of drugs that disrupt proteins in pathogens while sparing patients from side-effects.

The malaria parasite has a four-stage life cycle, and the Fields group analyzed only the proteins expressed in the phase that infects human red blood cells, an infection that leads to fever, shaking chills, headache, muscle aches, and other symptoms. Ideker said critics may fault his study because only a subset of the Plasmodium’s proteins is expressed in the erythrocytic stage. However, he noted that the parasite’s asexual-phase is actually enriched in proteins for which homologs have been found in other species. Ideker also noted that the known protein interactions in yeast, worm, and fly represent only 20 percent of the total interactions and some of the reported interactions may be erroneous.

"All the protein networks described so far are incomplete and statistically noisy," said Ideker. "But whether they are incomplete and noisy in the same way or not, we can say with confidence that this particular stage of Plasmodium is different from the other organisms we’ve examined so far. It’s this lack of overlap with other species that’s surprising."

Ideker said the Plasmodium’s membrane-protein complexes may be of particular interest. "Plasmodium presents many of these proteins to the red blood cell during infection and prior to replication," he said. "What really jumps out of our paper is the large number of membrane protein interactions in Plasmodium that are absent in other organisms. While this is potentially good news for fighting malaria, we need to know much more before we start talking about which membrane-protein interactions to target with a new drug."

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>