Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new method to help find deadly malaria parasite’s Achilles heel

03.11.2005


The most deadly malaria parasite has protein ’wiring’ that differs markedly from the cellular circuitry of other higher organisms, a finding which could lead to the development of antimalarial drugs that exploit that difference

Researchers at UCSD have discovered that the single-cell parasite responsible for an estimated 1 million deaths per year worldwide from malaria has protein "wiring" that differs markedly from the cellular circuitry of other higher organisms, a finding which could lead to the development of antimalarial drugs that exploit that difference.

The scientists will report in the Nov. 3 issue of Nature a comparison of newly discovered protein-interactions in Plasmodium falciparum with protein interactions reported earlier in four other well studied model organisms -- yeast, a nematode worm, the fruit fly, and a bacterium that causes digestive-tract ulcers in humans. The authors of the study, Trey Ideker, a professor of bioengineering at UCSD’s Jacobs School of Engineering, and two graduate students, Silpa Suthram and Taylor Sittler, said the malaria parasite’s protein interactions "set it apart from other species."



"We’ve known since the Plasmodium genome was sequenced three years ago that 40 percent of its 5,300 proteins are significantly similar, or homologous, to proteins in other eukaryotes, but until now we didn’t know that the malaria parasite assembles those proteins so uniquely," said Ideker. "Since our earlier research showed that yeast, worm, and fly have hundreds of both conserved proteins and protein interactions, we didn’t initially believe our own analysis, which showed that there are only three Plasmodium protein interactions in common with yeast and none in common with the other species studied." The World Health Organization warns that malaria is a growing threat to health worldwide, particularly in poor countries. No malaria vaccine has been developed, and once powerful antimalarial drugs are less and less effective because Plasmodium falciparum has developed resistance to those drugs. Even mosquitoes that transmit malaria are developing resistance to the most commonly used insecticides.

"The demonstration that the Plasmodium protein network differs significantly from those of several model organisms is an intriguing result that could lead to the identification of novel drug targets for fighting malaria," said John Whitmarsh, acting director of the Center for Bioinformatics and Computational Biology at the National Institute of General Medical Sciences, which partially funded the work. "Ideker and his team have demonstrated the effectiveness of a computational approach based on mathematics for understanding complex biological interactions."

Researchers studying protein expression under controlled laboratory conditions have been slowed because techniques designed for other organisms work poorly with Plasmodium because 80 percent of its genome is comprised of only two of the four building blocks of DNA.

Stanly Fields, a professor of genomic sciences at the University of Washington who invented an ingenious way to identify pairs of proteins that physically interact with one another, modified his technique and added special culture conditions to enable his group to study Plasmodium. Fields’s team and collaborators at Prolexys Pharmaceuticals of Salt Lake City, UT, discovered 2,846 interactions involving 1,312 Plasmodium falciparum proteins. The team provided data on those interactions to Ideker’s group earlier and also reported the results in the Nov. 3 issue of Nature.

Ideker’s team applied a rigorous statistical analysis approach to the Fields group’s Plasmodium data, focusing on interacting proteins that have homologs in other species. While the genomes of hundreds of species are filled with homologous proteins, Ideker and his colleagues are eager to understand how they interact with one another as part of a new approach to help in the design of drugs that disrupt proteins in pathogens while sparing patients from side-effects.

The malaria parasite has a four-stage life cycle, and the Fields group analyzed only the proteins expressed in the phase that infects human red blood cells, an infection that leads to fever, shaking chills, headache, muscle aches, and other symptoms. Ideker said critics may fault his study because only a subset of the Plasmodium’s proteins is expressed in the erythrocytic stage. However, he noted that the parasite’s asexual-phase is actually enriched in proteins for which homologs have been found in other species. Ideker also noted that the known protein interactions in yeast, worm, and fly represent only 20 percent of the total interactions and some of the reported interactions may be erroneous.

"All the protein networks described so far are incomplete and statistically noisy," said Ideker. "But whether they are incomplete and noisy in the same way or not, we can say with confidence that this particular stage of Plasmodium is different from the other organisms we’ve examined so far. It’s this lack of overlap with other species that’s surprising."

Ideker said the Plasmodium’s membrane-protein complexes may be of particular interest. "Plasmodium presents many of these proteins to the red blood cell during infection and prior to replication," he said. "What really jumps out of our paper is the large number of membrane protein interactions in Plasmodium that are absent in other organisms. While this is potentially good news for fighting malaria, we need to know much more before we start talking about which membrane-protein interactions to target with a new drug."

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>