Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful tests of new treatments in mice for eye disease causing irreversible blindness in humans

02.11.2005


A team led by Krzysztof Palczewski, Ph.D., chair of pharmacology at the Case Western Reserve University School of Medicine, has taken the first steps in treating an eye disease causing irreversible congenital blindness in millions of people worldwide by successfully testing two new treatments in mice.



Publishing in this month’s open access journal PLoS Medicine, the researchers found that these treatments "provide highly effective and complementary means for restoring retinal function in this animal model of human hereditary blindness."

The disease studied is Leber congenital amaurosis (LCA), characterized by severe loss of vision at birth. Its causes are not fully understood. Researchers believe that the disease might be due to abnormal development of photoreceptor cells in the retina, extremely premature degeneration of these cells, or lack of essential metabolic ingredients necessary for vision in the cells. In a subset of these diseases, it is known that the retina stops functioning due to loss of the lecithin retinol acyl-transferase enzyme (LRAT). LRAT is required for regeneration of a pigment necessary for the eye to detect light.


LCA can be caused by mutations in the gene encoding RPE65, a key protein involved in the production and recycling of 11-cis-retinal in the eye. Currently, there is no treatment for LCA, although previous studies in mice have successfully tested the injection of a virus carrying the normal gene for RPE65, and, separately, oral administration of a vitamin A-like compound.

In the current paper, Palczewski (formerly of the University of Washington) examined the effect of combining the two treatments in blind mice that did not have the LRAT enzyme. They report that gene therapy carrying the LRAT gene significantly restored electroretinographic (ERG) responses and pupillary light responses. Pharmacological intervention with orally administered drugs also caused long-lasting restoration of retinal function in LRAT-deficient mice and increased ERG response.

They noted that the oral treatment was easier to administer compared with injecting the gene therapy directly into the eye, but a disadvantage of the oral treatment was a potential for long-term systemic toxicity compared with the gene therapy. However, toxicological data gathered in this and previous studies have suggested no long term ill effects in mice.

It is possible that each treatment might eventually prove to be more suitable for a specific age group of patients, and therefore, combining the therapies might offer more effective treatment for a wider age range of patients, suggest the authors.

The team hopes that if the treatments are used together, treatment with oral retinoids could begin in infancy to avoid early sight loss and the difficulties associated with surgery in very young patients. And when patients are older, long-lasting drug-free treatment could be done by surgically introducing gene therapy. This study marks the first step in finding out whether these treatments will work effectively and safely in humans.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>