Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful tests of new treatments in mice for eye disease causing irreversible blindness in humans

02.11.2005


A team led by Krzysztof Palczewski, Ph.D., chair of pharmacology at the Case Western Reserve University School of Medicine, has taken the first steps in treating an eye disease causing irreversible congenital blindness in millions of people worldwide by successfully testing two new treatments in mice.



Publishing in this month’s open access journal PLoS Medicine, the researchers found that these treatments "provide highly effective and complementary means for restoring retinal function in this animal model of human hereditary blindness."

The disease studied is Leber congenital amaurosis (LCA), characterized by severe loss of vision at birth. Its causes are not fully understood. Researchers believe that the disease might be due to abnormal development of photoreceptor cells in the retina, extremely premature degeneration of these cells, or lack of essential metabolic ingredients necessary for vision in the cells. In a subset of these diseases, it is known that the retina stops functioning due to loss of the lecithin retinol acyl-transferase enzyme (LRAT). LRAT is required for regeneration of a pigment necessary for the eye to detect light.


LCA can be caused by mutations in the gene encoding RPE65, a key protein involved in the production and recycling of 11-cis-retinal in the eye. Currently, there is no treatment for LCA, although previous studies in mice have successfully tested the injection of a virus carrying the normal gene for RPE65, and, separately, oral administration of a vitamin A-like compound.

In the current paper, Palczewski (formerly of the University of Washington) examined the effect of combining the two treatments in blind mice that did not have the LRAT enzyme. They report that gene therapy carrying the LRAT gene significantly restored electroretinographic (ERG) responses and pupillary light responses. Pharmacological intervention with orally administered drugs also caused long-lasting restoration of retinal function in LRAT-deficient mice and increased ERG response.

They noted that the oral treatment was easier to administer compared with injecting the gene therapy directly into the eye, but a disadvantage of the oral treatment was a potential for long-term systemic toxicity compared with the gene therapy. However, toxicological data gathered in this and previous studies have suggested no long term ill effects in mice.

It is possible that each treatment might eventually prove to be more suitable for a specific age group of patients, and therefore, combining the therapies might offer more effective treatment for a wider age range of patients, suggest the authors.

The team hopes that if the treatments are used together, treatment with oral retinoids could begin in infancy to avoid early sight loss and the difficulties associated with surgery in very young patients. And when patients are older, long-lasting drug-free treatment could be done by surgically introducing gene therapy. This study marks the first step in finding out whether these treatments will work effectively and safely in humans.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>