Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries about neuron plasticity linked to learning and memory

02.11.2005


Neurons experience large-scale changes across their dendrites during learning, say neuroscientists at The University of Texas at Austin in a new study that highlights the important role that these cell regions may play in the processes of learning and memory.


The research, published online Oct. 23 and in the November issue of the journal Nature Neuroscience, shows that ion channels distributed in the dendritic membrane change during a simulated learning task and that this requires the rapid production of new proteins.

"Our new work strongly supports the idea that learning involves changes in dendrites," says Dr. Daniel Johnston, director of the Center for Learning and Memory and professor in the Institute for Neuroscience.

The finding could also lead to advances in understanding conditions like epilepsy and age-related memory loss and could point to potential treatment opportunities for such conditions in the future.



Dendrites--the thin branch-like extensions of a neuron cell--receive many inputs from other neurons that transmit information through contact points called synapses. Much attention has been focused on the role that changes at synapses play in learning. They change in ways that make it easier for connected neurons to pass information.

Johnston and his colleagues show that learning and memory are likely to not only involve changes at synapses, but also in dendrites. They found that h-channels, which are distributed throughout the dendrite membrane and allow the passage of potassium and sodium ions into and out of the neuron, are altered during learning.

"The h-channels undergo plasticity, not near the synapse but probably throughout the dendritic tree," says Johnston.

To record the changes during learning, cells from the rat hippocampus (an important area of the brain for short-term memory) were electrically stimulated using a high frequency pattern called theta-bursts. Theta-bursts mimic the electrical stimulus that shoots through neurons when animals perform a learning task. The researchers found that when stimulated with theta-bursts, hippocampus neurons showed h-channel plasticity and a rapid increase in the synthesis of h-channel proteins.

The proteins were produced in the rat hippocampal neurons within 10 minutes, which is pretty rapid for cells, says Johnston.

"This really pushes the envelope with respect to how fast a neuron can produce new proteins important for learning," he says.

Learning and memory researchers know that protein synthesis in neurons is related to long-term memory, because protein synthesis inhibitors block long-term memory in animals.

Johnston says it’s possible that the new proteins are being used by the neuron to build more h-channels in the dendrite membrane. He has a working hypothesis that h-channels may help buffer receiving neurons from being barraged and over-stimulated by inputs coming from information transmitting neurons.

"The h-channel plasticity alters the way the entire dendritic tree responds to the synaptic inputs," he says.

H-channel plasticity may normalize the firing rate of the cell.

"If cells aren’t kept in a normal operating regime, learning would not be as effective," Johnston says. "H-channel plasticity might keep the cell within an operating window in which it can continue to learn."

Dan Johnston | EurekAlert!
Further information:
http://www.clm.utexas.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>