Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key mechanism found that promotes spread of malignant melanoma

02.11.2005


Researchers at Northwestern University have discovered a key signaling mechanism that may promote the ability of highly aggressive malignant melanoma cells to metastasize, or spread from a primary tumor to distant sites within the body.



Results of their study, published in the November issue of Cancer Research, suggest that the signaling mechanism may be a potential target for prevention of metastatic melanoma.

The study was led by Angela R. Hess, a research scientist at the Children’s Memorial Research Center, and was conducted in the laboratory of Mary Hendrix, president and scientific director of the Children’s Memorial Research Center and professor of pediatrics at Northwestern University Feinberg School of Medicine.


Metastatic cancer cells are characterized by increased tumor cell invasion and migration, as well as tumor cell plasticity, manifested as vasculogenic mimicry – the ability of aggressive melanoma cells to masquerade as endothelial-like cells by forming their own vascular networks. Hess and co-investigators found that an enzyme known as focal adhesion kinase (FAK), which is important for many cellular processes, including cell survival, invasion and migration, is activated in malignant uveal (eye) and skin melanoma.

They hypothesized that FAK could play a major role in promoting aggressive melanoma because its increased production has been linked to tumor cell aggressiveness in other cancers, including prostate, thyroid, colorectal, ovarian and oral tumors.

Hess and colleagues found that elevated activity of FAK in aggressive melanoma cells correlated with the cells’ increased invasion, migration and vasculogenic mimicry behaviors.

As proof of principle, the researchers then blocked FAK signaling in aggressive melanoma cells, which resulted in a decrease in melanoma cell invasion, migration and vasculogenic mimicry.

"Collectively, our data suggest a new mechanism involved in promoting aggressive melanoma though FAK-mediated signal transduction pathways, thus providing new insights into possible therapeutic intervention strategies," Hess said. "Understanding the molecular mechanisms that promote aggressive melanoma is essential to predicting the likelihood of metastasis at a stage when intervention is possible," Hess said.

The Hendrix laboratory has identified several signal transduction components that seem to play significant roles in mediating the aggressive properties of melanoma cells.

"Although we are beginning to understand the involvement of some of the signaling pathways that regulate cell invasion, migration and vasculogenic mimicry, the complexity of the coordinated molecular interactions underlying these processes remains to be elucidated," Hendrix said.

Malignant melanoma is curable when detected early. However, left untreated and allowed to metastasize, malignant melanoma often is fatal. In the United States, the incidence of melanoma has tripled in the past 50 years and has almost doubled in the last decade. It is estimated that approximately 48,000 new cases of melanoma will be diagnosed this year, with an expected 7,700 deaths, according to data from the American Cancer Society.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>