Opening the door to new drug treatments

University of Leeds biologists have made an important breakthrough in developing the drugs of the future. Their work on targeting individual genes for more effective and cheaper drug testing opens the way to treatments for a huge range of diseases including diabetes and atherosclerosis, which leads to strokes and heart attacks.


Making new pharmacological ‘tools’ to explore individual genes is an enormous challenge, but vital for public health. “Testing specific genes gives us fundamental knowledge on how we could predict and prevent disease,” said Professor David Beech. “It also plays the crucial role of confirming valid gene ‘targets’ before the pharmaceuticals industry carries out complex and expensive research and development. The problem is that tools which hit just one gene-product – or protein – are extremely rare.”

The University’s £5m integrative membrane biology centre, which opened in October, has become a hub for research on ion channels – ‘doors’ controlling the movement of ions including sodium and calcium into the body’s cells. Abnormalities in these channels cause many diseases, so they are often the focus of drugs.

Professor Beech has developed a simple method for blocking the function of these channels by targeting the E3 region, important because it is accessible to antibodies introduced from outside the cells, making it an ideal drug target. “By blocking one particular channel in this region, we can see how calcium movement through this protein impacts on vascular disease,” said Professor Beech.

Professor Beech’s findings were published in a prestigious research article in Nature Biotechnology last month. The research was funded by the Wellcome Trust and the British Heart Foundation.

Media Contact

Claire Jones alfa

More Information:

http://www.leeds.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors