Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening the door to new drug treatments

02.11.2005


University of Leeds biologists have made an important breakthrough in developing the drugs of the future. Their work on targeting individual genes for more effective and cheaper drug testing opens the way to treatments for a huge range of diseases including diabetes and atherosclerosis, which leads to strokes and heart attacks.



Making new pharmacological ‘tools’ to explore individual genes is an enormous challenge, but vital for public health. “Testing specific genes gives us fundamental knowledge on how we could predict and prevent disease,” said Professor David Beech. “It also plays the crucial role of confirming valid gene ‘targets’ before the pharmaceuticals industry carries out complex and expensive research and development. The problem is that tools which hit just one gene-product - or protein - are extremely rare.”

The University’s £5m integrative membrane biology centre, which opened in October, has become a hub for research on ion channels – ‘doors’ controlling the movement of ions including sodium and calcium into the body’s cells. Abnormalities in these channels cause many diseases, so they are often the focus of drugs.


Professor Beech has developed a simple method for blocking the function of these channels by targeting the E3 region, important because it is accessible to antibodies introduced from outside the cells, making it an ideal drug target. “By blocking one particular channel in this region, we can see how calcium movement through this protein impacts on vascular disease,” said Professor Beech.

Professor Beech’s findings were published in a prestigious research article in Nature Biotechnology last month. The research was funded by the Wellcome Trust and the British Heart Foundation.

Claire Jones | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>