Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Monkey math machinery is like humans’


Monkeys have a semantic perception of numbers that is like humans’ and which is independent of language, Duke University cognitive neuroscientists have discovered. They said their findings demonstrate that the neural mechanism underlying numerical perception is evolutionarily primitive.

Jessica Cantlon and Elizabeth Brannon described their findings with macaque monkeys in an article published online the week of Oct. 31, 2005, in the Early Edition of the Proceedings of the National Academies of Science. Cantlon is a graduate student and Brannon is an assistant professor in the Department of Psychological and Brain Sciences, as well as a member of the Center for Cognitive Neuroscience. Their work was supported by the National Institute for Child Health and Development, The National Science Foundation and a John Merck Scholars Award.

In their experiments, the researchers sought to test whether monkeys show a phenomenon known as "semantic congruity" when making numerical comparisons.

"When adult humans compare any two things, such as the size of two animals, and they’re asked ’which is smaller, an ant or a rat?’ one might think it’s the same kind of question as ’which is larger, an ant or a rat?’" said Brannon. "But humans are faster at saying an ant is smaller than saying a rat is larger. By contrast, if the two animals are large, such as a cow or an elephant, they’re quicker at saying the elephant is larger than saying the cow is smaller. This ’semantic congruity’ holds for all kinds of comparisons, including numbers and distances.

"It would seem that this is entirely a linguistic effect, totally dependent on language," said Brannon. "But we sought to understand whether monkeys showed this semantic effect, even though they don’t have language."

In their experiments, Cantlon and Brannon presented monkeys with two arrays of randomized numbers of dots displayed on a computer touch screen at randomized positions. However, instead of using language to instruct the monkeys to "choose larger" or "choose smaller" the researchers made the background blue if the monkeys were to choose the larger number and red if the smaller number. The monkeys were rewarded with a sip of a sweet drink for correct answers.

"Our results showed a very large semantic congruity effect," said Cantlon. "For example, when the number pair was small, such as two versus three, the monkeys were much faster at choosing the smaller compared to the larger of the pair. We were also impressed at the high level of accuracy the monkeys achieved on this difficult conditional discrimination," she said.

"Clearly, even though their capability has nothing to do with language, it is nevertheless semantic in that the red and blue color cues carry meaning for the monkeys," said Cantlon.

Brannon said the new findings represent further evidence of the fundamental similarity in numerical thinking in human and non-human primates.

Said Brannon "This is another piece of the puzzle showing us that the comparison mechanism that the monkeys use is, as far as we can tell, the same mechanism that humans are using." More broadly, she said, the findings yield insight into the role – or lack of a role – that language plays in the process.

"The ability to use language is obviously one of the major differences in the way humans and animals function in the world," she said. "However, these experiments clearly show that this semantic congruity effect, which we thought was language-dependent, is not."

Dennis Meredith | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>