Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monkey math machinery is like humans’

01.11.2005


Monkeys have a semantic perception of numbers that is like humans’ and which is independent of language, Duke University cognitive neuroscientists have discovered. They said their findings demonstrate that the neural mechanism underlying numerical perception is evolutionarily primitive.



Jessica Cantlon and Elizabeth Brannon described their findings with macaque monkeys in an article published online the week of Oct. 31, 2005, in the Early Edition of the Proceedings of the National Academies of Science. Cantlon is a graduate student and Brannon is an assistant professor in the Department of Psychological and Brain Sciences, as well as a member of the Center for Cognitive Neuroscience. Their work was supported by the National Institute for Child Health and Development, The National Science Foundation and a John Merck Scholars Award.

In their experiments, the researchers sought to test whether monkeys show a phenomenon known as "semantic congruity" when making numerical comparisons.


"When adult humans compare any two things, such as the size of two animals, and they’re asked ’which is smaller, an ant or a rat?’ one might think it’s the same kind of question as ’which is larger, an ant or a rat?’" said Brannon. "But humans are faster at saying an ant is smaller than saying a rat is larger. By contrast, if the two animals are large, such as a cow or an elephant, they’re quicker at saying the elephant is larger than saying the cow is smaller. This ’semantic congruity’ holds for all kinds of comparisons, including numbers and distances.

"It would seem that this is entirely a linguistic effect, totally dependent on language," said Brannon. "But we sought to understand whether monkeys showed this semantic effect, even though they don’t have language."

In their experiments, Cantlon and Brannon presented monkeys with two arrays of randomized numbers of dots displayed on a computer touch screen at randomized positions. However, instead of using language to instruct the monkeys to "choose larger" or "choose smaller" the researchers made the background blue if the monkeys were to choose the larger number and red if the smaller number. The monkeys were rewarded with a sip of a sweet drink for correct answers.

"Our results showed a very large semantic congruity effect," said Cantlon. "For example, when the number pair was small, such as two versus three, the monkeys were much faster at choosing the smaller compared to the larger of the pair. We were also impressed at the high level of accuracy the monkeys achieved on this difficult conditional discrimination," she said.

"Clearly, even though their capability has nothing to do with language, it is nevertheless semantic in that the red and blue color cues carry meaning for the monkeys," said Cantlon.

Brannon said the new findings represent further evidence of the fundamental similarity in numerical thinking in human and non-human primates.

Said Brannon "This is another piece of the puzzle showing us that the comparison mechanism that the monkeys use is, as far as we can tell, the same mechanism that humans are using." More broadly, she said, the findings yield insight into the role – or lack of a role – that language plays in the process.

"The ability to use language is obviously one of the major differences in the way humans and animals function in the world," she said. "However, these experiments clearly show that this semantic congruity effect, which we thought was language-dependent, is not."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>