Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees solve complex colour puzzles

01.11.2005


Bees have a much more sophisticated visual system than previously thought, according to a new UCL (University College London) study in which bees were able to solve complicated colour puzzles. The findings shed light on how brains resolve one of the most difficult challenges of vision – namely, recognizing different surfaces under different colours of illumination – by suggesting that bees solve this problem using their experience with meaningful colour relationships between objects in a scene. The findings, published in the Proceedings of the National Academy of Sciences, may one day lead to the design of autonomous robotic systems.



In the UCL study, scientists from the UCL Institute of Ophthalmology trained bumblebees to find artificial flowers of a particular colour using a nectar reward. They then tested the bees’ ability to find the same flowers in scenes that were simultaneously illuminated by four differently coloured lights – UV-yellow, blue, yellow and green. To solve this puzzle, the bees had to effectively segment the scene into its different regions of illumination, and then find the correct flowers within each region.

Dr Beau Lotto of the UCL Institute of Ophthalmology says: “Although we knew that bees were able to recognise flowers under different global lights, we didn’t know whether they could also do this under more complicated conditions, ones that are in fact more typical in nature, such as dappled light across a woodland floor.


“When all the surfaces in a scene are under the same light, identifying a particular surface when the global illumination changes is in principle an easy problem to solve, since all vision needs to do is adapt itself to the scene’s average colour, a bit like adapting to the darkness of a cinema. Far more difficult is to recognise the surface or object under multiple lights simultaneously, since adapting to the scene’s average colour – which was previously thought to be the strategy used by bees – won’t work.”

“Our study shows that the tiny brain of the bee can not only solve this difficult task, which the most sophisticated computers still can’t resolve, but suggests they do so by using the colour relationships between objects in a scene that were statistically most useful in their past experience. Because this same strategy is also used by humans, our work on bees, in conjunction with our work on humans, may enable us to understand the general principles by which any visual system (natural or artificial) can construct useful behaviour from ambiguous sensory information.

‘One long-term aim of our research is to exploit this understanding to build seeing robots that, like the bee with its mere one million neurons, can learn to find a simple flower in a meadow, which no machine can do at present. Our lab has reconstructed our specially designed bee flight arena – known as the Bee Matrix – in the virtual world, where virtual autonomous bees are ‘evolving’ under exactly the same conditions as those experienced by our real bees.”

Judith Moore | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>