Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel treatment target for deadly brain tumors identified

31.10.2005


Researchers at Wake Forest University Baptist Medical Center have identified a second promising treatment target for glioblastoma multiforme, one of the most deadly types of brain tumors. The research results are reported in the October issue of Molecular Cancer Research.

"We’ve found that a particular protein may play a major role in the progression of these tumors, suggesting an attractive new treatment approach," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center.

This was the first study to investigate the presence and significance of a protein called EphA2 in brain cancer cells. This protein, which is found in cell membranes, allows normal cells to communicate with their environment and each other. In its normal active state, the protein seems to inhibit abnormal cell growth and division.



Debinski and colleagues demonstrated that glioblastoma cells have significantly increased levels of the protein EphA2 compared to normal cells – but it is in an inactive form. They believe that this inactive form of EphA2 aids in the survival and spread of cancer cells.

To test their hypothesis, they treated glioblastoma cells with ephrinA1, a naturally occurring molecule that binds to EphA2 and activates it. They had already demonstrated that ephrinA1 is present at much lower levels in cells and tumors with increased levels of inactive EphA2.

"We observed that cells treated with ephrinA1 slowed down their growth and were less likely to exhibit invasive properties," said Debinski.

The researchers believe that developing medication to change levels of EphA2 and ephrinA1 offers new promise for successfully treating glioblastoma multiforme, which is the most common form of brain tumor and the least curable of all human cancers. The majority of the 17,500 brain tumors diagnosed each year in the United States are glioblastomas. Patients have a median survival time of nine to 12 months and a five-year survival rate of 1 to 5 percent.

"EphA2 represents a novel target for the development of molecular therapeutics for the imaging and treatment of patients with glioblastoma," said Debinski. "New therapies are clearly needed because, despite the standard treatment of surgically removing the tumor and treating the patient with chemotherapy and radiation, survival has increased only slightly over the past 30 years."

Debinski has already developed one treatment for glioblastoma, based on his discovery that the tumor’s cells have a particular type of receptor for interleukin 13 (IL 13), a naturally occurring protein that regulates the immune system in the body. Normal cells do not have these same receptors. Debinski developed a drug that combines a form of IL-13 with a toxin that kills cancer cells. By targeting the therapy to these receptors, the drug finds and kills the cancer cells. The first generation of the drug is being tested in advanced clinical trials worldwide.

Both of Debinki’s projects focus on the identification of "molecular markers," or molecules that are found in high levels on tumor cells but are nearly absent on normal cells. This makes them attractive for such treatment approaches as targeted drug delivery.

EphA2 may also show promise for treating other types of cancer. It has been shown to be present at high levels in several other tumors, such as pancreas, colon and breast. And recently other researchers have shown that EphA2 is a potential target for a glioblastoma vaccine that could potentially prevent recurrences of the tumors.

Debinski’s results were preliminarily reported at the World Federation of NeuroOncology meeting and the European Association for Neuro-Oncology meeting, both in Edinburgh, Scotland, in May. Jill Wykosky, B.S., and Denise Gibo, B.S., from Debinski’s laboratory, conducted this work, and Constance Stanton, M.D., from the Department of Pathology, collaborated.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>