Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel treatment target for deadly brain tumors identified

31.10.2005


Researchers at Wake Forest University Baptist Medical Center have identified a second promising treatment target for glioblastoma multiforme, one of the most deadly types of brain tumors. The research results are reported in the October issue of Molecular Cancer Research.

"We’ve found that a particular protein may play a major role in the progression of these tumors, suggesting an attractive new treatment approach," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center.

This was the first study to investigate the presence and significance of a protein called EphA2 in brain cancer cells. This protein, which is found in cell membranes, allows normal cells to communicate with their environment and each other. In its normal active state, the protein seems to inhibit abnormal cell growth and division.



Debinski and colleagues demonstrated that glioblastoma cells have significantly increased levels of the protein EphA2 compared to normal cells – but it is in an inactive form. They believe that this inactive form of EphA2 aids in the survival and spread of cancer cells.

To test their hypothesis, they treated glioblastoma cells with ephrinA1, a naturally occurring molecule that binds to EphA2 and activates it. They had already demonstrated that ephrinA1 is present at much lower levels in cells and tumors with increased levels of inactive EphA2.

"We observed that cells treated with ephrinA1 slowed down their growth and were less likely to exhibit invasive properties," said Debinski.

The researchers believe that developing medication to change levels of EphA2 and ephrinA1 offers new promise for successfully treating glioblastoma multiforme, which is the most common form of brain tumor and the least curable of all human cancers. The majority of the 17,500 brain tumors diagnosed each year in the United States are glioblastomas. Patients have a median survival time of nine to 12 months and a five-year survival rate of 1 to 5 percent.

"EphA2 represents a novel target for the development of molecular therapeutics for the imaging and treatment of patients with glioblastoma," said Debinski. "New therapies are clearly needed because, despite the standard treatment of surgically removing the tumor and treating the patient with chemotherapy and radiation, survival has increased only slightly over the past 30 years."

Debinski has already developed one treatment for glioblastoma, based on his discovery that the tumor’s cells have a particular type of receptor for interleukin 13 (IL 13), a naturally occurring protein that regulates the immune system in the body. Normal cells do not have these same receptors. Debinski developed a drug that combines a form of IL-13 with a toxin that kills cancer cells. By targeting the therapy to these receptors, the drug finds and kills the cancer cells. The first generation of the drug is being tested in advanced clinical trials worldwide.

Both of Debinki’s projects focus on the identification of "molecular markers," or molecules that are found in high levels on tumor cells but are nearly absent on normal cells. This makes them attractive for such treatment approaches as targeted drug delivery.

EphA2 may also show promise for treating other types of cancer. It has been shown to be present at high levels in several other tumors, such as pancreas, colon and breast. And recently other researchers have shown that EphA2 is a potential target for a glioblastoma vaccine that could potentially prevent recurrences of the tumors.

Debinski’s results were preliminarily reported at the World Federation of NeuroOncology meeting and the European Association for Neuro-Oncology meeting, both in Edinburgh, Scotland, in May. Jill Wykosky, B.S., and Denise Gibo, B.S., from Debinski’s laboratory, conducted this work, and Constance Stanton, M.D., from the Department of Pathology, collaborated.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>