Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel treatment target for deadly brain tumors identified

31.10.2005


Researchers at Wake Forest University Baptist Medical Center have identified a second promising treatment target for glioblastoma multiforme, one of the most deadly types of brain tumors. The research results are reported in the October issue of Molecular Cancer Research.

"We’ve found that a particular protein may play a major role in the progression of these tumors, suggesting an attractive new treatment approach," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center.

This was the first study to investigate the presence and significance of a protein called EphA2 in brain cancer cells. This protein, which is found in cell membranes, allows normal cells to communicate with their environment and each other. In its normal active state, the protein seems to inhibit abnormal cell growth and division.



Debinski and colleagues demonstrated that glioblastoma cells have significantly increased levels of the protein EphA2 compared to normal cells – but it is in an inactive form. They believe that this inactive form of EphA2 aids in the survival and spread of cancer cells.

To test their hypothesis, they treated glioblastoma cells with ephrinA1, a naturally occurring molecule that binds to EphA2 and activates it. They had already demonstrated that ephrinA1 is present at much lower levels in cells and tumors with increased levels of inactive EphA2.

"We observed that cells treated with ephrinA1 slowed down their growth and were less likely to exhibit invasive properties," said Debinski.

The researchers believe that developing medication to change levels of EphA2 and ephrinA1 offers new promise for successfully treating glioblastoma multiforme, which is the most common form of brain tumor and the least curable of all human cancers. The majority of the 17,500 brain tumors diagnosed each year in the United States are glioblastomas. Patients have a median survival time of nine to 12 months and a five-year survival rate of 1 to 5 percent.

"EphA2 represents a novel target for the development of molecular therapeutics for the imaging and treatment of patients with glioblastoma," said Debinski. "New therapies are clearly needed because, despite the standard treatment of surgically removing the tumor and treating the patient with chemotherapy and radiation, survival has increased only slightly over the past 30 years."

Debinski has already developed one treatment for glioblastoma, based on his discovery that the tumor’s cells have a particular type of receptor for interleukin 13 (IL 13), a naturally occurring protein that regulates the immune system in the body. Normal cells do not have these same receptors. Debinski developed a drug that combines a form of IL-13 with a toxin that kills cancer cells. By targeting the therapy to these receptors, the drug finds and kills the cancer cells. The first generation of the drug is being tested in advanced clinical trials worldwide.

Both of Debinki’s projects focus on the identification of "molecular markers," or molecules that are found in high levels on tumor cells but are nearly absent on normal cells. This makes them attractive for such treatment approaches as targeted drug delivery.

EphA2 may also show promise for treating other types of cancer. It has been shown to be present at high levels in several other tumors, such as pancreas, colon and breast. And recently other researchers have shown that EphA2 is a potential target for a glioblastoma vaccine that could potentially prevent recurrences of the tumors.

Debinski’s results were preliminarily reported at the World Federation of NeuroOncology meeting and the European Association for Neuro-Oncology meeting, both in Edinburgh, Scotland, in May. Jill Wykosky, B.S., and Denise Gibo, B.S., from Debinski’s laboratory, conducted this work, and Constance Stanton, M.D., from the Department of Pathology, collaborated.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>