Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel treatment target for deadly brain tumors identified

31.10.2005


Researchers at Wake Forest University Baptist Medical Center have identified a second promising treatment target for glioblastoma multiforme, one of the most deadly types of brain tumors. The research results are reported in the October issue of Molecular Cancer Research.

"We’ve found that a particular protein may play a major role in the progression of these tumors, suggesting an attractive new treatment approach," said Waldemar Debinski, M.D., Ph.D., director of the Brain Tumor Center of Excellence at Wake Forest University Baptist Medical Center.

This was the first study to investigate the presence and significance of a protein called EphA2 in brain cancer cells. This protein, which is found in cell membranes, allows normal cells to communicate with their environment and each other. In its normal active state, the protein seems to inhibit abnormal cell growth and division.



Debinski and colleagues demonstrated that glioblastoma cells have significantly increased levels of the protein EphA2 compared to normal cells – but it is in an inactive form. They believe that this inactive form of EphA2 aids in the survival and spread of cancer cells.

To test their hypothesis, they treated glioblastoma cells with ephrinA1, a naturally occurring molecule that binds to EphA2 and activates it. They had already demonstrated that ephrinA1 is present at much lower levels in cells and tumors with increased levels of inactive EphA2.

"We observed that cells treated with ephrinA1 slowed down their growth and were less likely to exhibit invasive properties," said Debinski.

The researchers believe that developing medication to change levels of EphA2 and ephrinA1 offers new promise for successfully treating glioblastoma multiforme, which is the most common form of brain tumor and the least curable of all human cancers. The majority of the 17,500 brain tumors diagnosed each year in the United States are glioblastomas. Patients have a median survival time of nine to 12 months and a five-year survival rate of 1 to 5 percent.

"EphA2 represents a novel target for the development of molecular therapeutics for the imaging and treatment of patients with glioblastoma," said Debinski. "New therapies are clearly needed because, despite the standard treatment of surgically removing the tumor and treating the patient with chemotherapy and radiation, survival has increased only slightly over the past 30 years."

Debinski has already developed one treatment for glioblastoma, based on his discovery that the tumor’s cells have a particular type of receptor for interleukin 13 (IL 13), a naturally occurring protein that regulates the immune system in the body. Normal cells do not have these same receptors. Debinski developed a drug that combines a form of IL-13 with a toxin that kills cancer cells. By targeting the therapy to these receptors, the drug finds and kills the cancer cells. The first generation of the drug is being tested in advanced clinical trials worldwide.

Both of Debinki’s projects focus on the identification of "molecular markers," or molecules that are found in high levels on tumor cells but are nearly absent on normal cells. This makes them attractive for such treatment approaches as targeted drug delivery.

EphA2 may also show promise for treating other types of cancer. It has been shown to be present at high levels in several other tumors, such as pancreas, colon and breast. And recently other researchers have shown that EphA2 is a potential target for a glioblastoma vaccine that could potentially prevent recurrences of the tumors.

Debinski’s results were preliminarily reported at the World Federation of NeuroOncology meeting and the European Association for Neuro-Oncology meeting, both in Edinburgh, Scotland, in May. Jill Wykosky, B.S., and Denise Gibo, B.S., from Debinski’s laboratory, conducted this work, and Constance Stanton, M.D., from the Department of Pathology, collaborated.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>