Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genome wide search for genes underlying anxiety disorders turned up unexpected candidates

31.10.2005


Increasing the activity of two enzymes better known for their role in oxidative stress metabolism turns normally relaxed mice into "Nervous Nellies," according to research conducted at the Salk Institute for Biological Studies and reported in the early online edition of Nature.



Locally overexpressing either glyoxalase 1 or glutathione reductase 1 in mouse brains significantly increased anxiety in usually relaxed mice and made already jittery mice even more anxiety-ridden. Inhibition of glyoxalase 1 had the opposite effect.

"Currently, very little is known about the genes that predispose to psychiatric disease," says first author Iiris Hovatta, who was a postdoctoral research in Salk’s Laboratory of Genetics when the research was conducted. "All of the 17 genes that we identified are very good candidates for human anxiety disorders and most of them have never been associated with anxiety-related behavior before," she adds.


"This is a very exciting study where we can genetically interfere with the behavior outcome, emphasizing the genetic hard wiring of certain traits,’’ says Inder Verma, professor in the Laboratory for Genetics at the Salk Institute.

Out of the 17 candidates, the researchers focused on the most promising ones, glyoxalase 1 and glutathione reductase 1, since both enzymes belonged to the same metabolic pathway. In addition, a study by Turkish scientists had found elevated levels of oxidative stress markers in patients with severe anxiety disorders. "It might be that oxidative stress metabolism and anxiety levels are linked, although we do not know the exact mechanism at the moment," says Hovatta.

Like other complex psychiatric traits, fear and anxiety are influenced by many genes. There is no such thing as a single "fear" gene that lets anxiety spiral out of control when the gene’s regulation is disturbed, making it difficult to identify the genetic roots of anxiety disorders.

For their study, the scientists relied on inbred mouse strains that differ considerably in their natural anxiety levels. Just like in humans suffering from anxiety disorders, the sights and sounds of unfamiliar environments can trigger panic in mice with anxious dispositions, causing them to freeze in place. Unlike their more relaxed contemporaries, naturally nervous mice are not explorers and may seem wary of open spaces.

Instead of studying individual genes the researchers simultaneously assessed the activity patterns of about 10,000 genes in specific brain regions with the help of microarrays. This extensive scan allowed the researchers to pinpoint multiple genes whose expression levels differed in relaxed and anxiety-prone mice.

To increase the specificity of their microarray analysis, they looked in only specific brain areas that have been shown to play a role in anxiety and fear (the amygdala, bed nucleus of the stria terminalis, cingulate cortex, hippocampus, hypothalamus, central peri-aqueductal grey and pituitary gland).

"We were incredibly surprised since out of the entire genome only 17 genes were robustly correlated with anxiety levels across many different strains," says Carrolee Barlow, lead author of the study and an adjunct professor in the Laboratory of Genetics. "Almost half of them were enzymes and not neurotransmitters as one might expect."

In the past, scientists tried to correlate complex psychiatric diseases with different forms of the genes controlling neurotransmitters, the chemical messengers that brain cells use to shuttle outgoing signals to neighboring cells, and their receptors, albeit with limited success. "That’s why we chose an unbiased approach that didn’t limit us to neurotransmitters," explains Barlow.

Now, Hovatta wants to find out what relevance, if any, the identified genes have to human anxiety disorders. "It is really exciting to study neurobiology of anxiety in mice and to understand the molecular mechanisms behind the regulation of behavior, but I am mostly interested in trying to find genes that predispose humans to anxiety disorders and to perhaps in the future try to develop better treatment practices. We are still far away from that," she cautions, "but it is the long term goal of the project."

Researchers contributing to the study include first author Iiris Hovatta, formerly at the Salk Institute, now at National Public Health Institute in Helsinki Finland, research assistants Richard S. Tennant and Robert Helton, research fellows Robert A. Marr and Oded Singer, both in the Laboratory of Genetics at the Salk Institute, Jeffrey M. Redwine at Neurome Inc., Julie A. Ellison, formerly at the Salk, now at Helix Medical Communications, Eric E. Schadt at Rosetta Inpharmatics LLC, Inder Verma, professor in the Laboratory for Genetics at the Salk Institute, David J. Lockhart, co-principal investigator and visiting scholar at the Salk Institute, and Carrolee Barlow, at Braincells Inc.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>