Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genome wide search for genes underlying anxiety disorders turned up unexpected candidates

31.10.2005


Increasing the activity of two enzymes better known for their role in oxidative stress metabolism turns normally relaxed mice into "Nervous Nellies," according to research conducted at the Salk Institute for Biological Studies and reported in the early online edition of Nature.



Locally overexpressing either glyoxalase 1 or glutathione reductase 1 in mouse brains significantly increased anxiety in usually relaxed mice and made already jittery mice even more anxiety-ridden. Inhibition of glyoxalase 1 had the opposite effect.

"Currently, very little is known about the genes that predispose to psychiatric disease," says first author Iiris Hovatta, who was a postdoctoral research in Salk’s Laboratory of Genetics when the research was conducted. "All of the 17 genes that we identified are very good candidates for human anxiety disorders and most of them have never been associated with anxiety-related behavior before," she adds.


"This is a very exciting study where we can genetically interfere with the behavior outcome, emphasizing the genetic hard wiring of certain traits,’’ says Inder Verma, professor in the Laboratory for Genetics at the Salk Institute.

Out of the 17 candidates, the researchers focused on the most promising ones, glyoxalase 1 and glutathione reductase 1, since both enzymes belonged to the same metabolic pathway. In addition, a study by Turkish scientists had found elevated levels of oxidative stress markers in patients with severe anxiety disorders. "It might be that oxidative stress metabolism and anxiety levels are linked, although we do not know the exact mechanism at the moment," says Hovatta.

Like other complex psychiatric traits, fear and anxiety are influenced by many genes. There is no such thing as a single "fear" gene that lets anxiety spiral out of control when the gene’s regulation is disturbed, making it difficult to identify the genetic roots of anxiety disorders.

For their study, the scientists relied on inbred mouse strains that differ considerably in their natural anxiety levels. Just like in humans suffering from anxiety disorders, the sights and sounds of unfamiliar environments can trigger panic in mice with anxious dispositions, causing them to freeze in place. Unlike their more relaxed contemporaries, naturally nervous mice are not explorers and may seem wary of open spaces.

Instead of studying individual genes the researchers simultaneously assessed the activity patterns of about 10,000 genes in specific brain regions with the help of microarrays. This extensive scan allowed the researchers to pinpoint multiple genes whose expression levels differed in relaxed and anxiety-prone mice.

To increase the specificity of their microarray analysis, they looked in only specific brain areas that have been shown to play a role in anxiety and fear (the amygdala, bed nucleus of the stria terminalis, cingulate cortex, hippocampus, hypothalamus, central peri-aqueductal grey and pituitary gland).

"We were incredibly surprised since out of the entire genome only 17 genes were robustly correlated with anxiety levels across many different strains," says Carrolee Barlow, lead author of the study and an adjunct professor in the Laboratory of Genetics. "Almost half of them were enzymes and not neurotransmitters as one might expect."

In the past, scientists tried to correlate complex psychiatric diseases with different forms of the genes controlling neurotransmitters, the chemical messengers that brain cells use to shuttle outgoing signals to neighboring cells, and their receptors, albeit with limited success. "That’s why we chose an unbiased approach that didn’t limit us to neurotransmitters," explains Barlow.

Now, Hovatta wants to find out what relevance, if any, the identified genes have to human anxiety disorders. "It is really exciting to study neurobiology of anxiety in mice and to understand the molecular mechanisms behind the regulation of behavior, but I am mostly interested in trying to find genes that predispose humans to anxiety disorders and to perhaps in the future try to develop better treatment practices. We are still far away from that," she cautions, "but it is the long term goal of the project."

Researchers contributing to the study include first author Iiris Hovatta, formerly at the Salk Institute, now at National Public Health Institute in Helsinki Finland, research assistants Richard S. Tennant and Robert Helton, research fellows Robert A. Marr and Oded Singer, both in the Laboratory of Genetics at the Salk Institute, Jeffrey M. Redwine at Neurome Inc., Julie A. Ellison, formerly at the Salk, now at Helix Medical Communications, Eric E. Schadt at Rosetta Inpharmatics LLC, Inder Verma, professor in the Laboratory for Genetics at the Salk Institute, David J. Lockhart, co-principal investigator and visiting scholar at the Salk Institute, and Carrolee Barlow, at Braincells Inc.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>