MBL study shows how good cholesterol (HDLs) provide human immunity to certain parasites

For years biomedical researchers have known that high density lipoproteins, commonly called HDLs or “good cholesterol,” are responsible for protecting humans from certain parasites, but couldn’t explain how. Now MBL scientists have discovered that human HDLs work this bug-repelling magic by serving as a platform for the assembly and delivery of two naturally occurring proteins that combine to create a super-toxic antimicrobial.

The research, published in the September 30 issue of the Journal of Biological Chemistry, focuses specifically on human innate immunity to Trypanosoma brucei brucei, the parasite that gives African cattle the deadly disease called Nagana, but which doesn’t harm humans even though scientists believe they are exposed to it. The parasite is a close relative of Trypanosoma brucei gambienese and Trypanosoma brucei rhodesiense, the organisms that cause African sleeping sickness in humans.

The findings that two proteins work synergistically to kill the Nagana parasite in humans contradict a long-held hypothesis that a single protein was the key to HDL’s parasite-fighting power. “The research may be helpful to veterinarians hoping to develop treatments to aid African cattle farmers, who lose three million cattle and around a billion US dollars annually to Nagana,” says April Shiflett, a scientist in the MBL’s Global Infectious Diseases Program and an author on the paper. Scientists also hope the research will provide key information to investigators seeking treatments for certain parasitic infections, such as malaria.

To identify the proteins–known as apolipoprotein L-1 (apo L-1) and haptoglobin-related protein (Hpr)–MBL scientists tested different amounts and combinations of the proteins on Trypanosoma brucei brucei specimens. To survive the parasite needs to digest the lipids in HDLs. Because HDL carries these proteins and enables them to combine, it is nature’s perfect delivery system for the antimicrobial. And when test organisms digested the super-toxic protein mix, the single-celled organisms literally dissolved.

Shiflett and her colleagues in the MBL’s Global Infectious Diseases Program are focused on understanding the molecular workings of a variety of parasites, including those that cause human African sleeping sickness, Nagana, and malaria. Such research is crucial to finding creating better treatments, and possibly cures, for diseases that are ravaging the people and economies of places like Africa and other developing countries.

Funding for this study was provided by the National Institutes of Health. The complete paper can be found in the Journal of Biological Chemistry, Volume 280, Number 38.

Media Contact

Gina Hebert EurekAlert!

More Information:

http://www.mbl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors