Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel discovery of ’DCDC2’ gene associated with dyslexia

31.10.2005


Pediatric researchers at Yale School of Medicine have identified a gene on human chromosome 6 called DCDC2, which is linked to dyslexia, a reading disability affecting millions of children and adults.



The researchers also found that a genetic alteration in DCDC2 leads to a disruption in the formation of brain circuits that make it possible to read. This genetic alteration is transmitted within families.

"These promising results now have the potential to lead to improved diagnostic methods to identify dyslexia and deepens understanding of how the reading process works on a molecular level," said lead author Jeffrey R. Gruen, M.D., associate professor in the Pediatrics Department at Yale School of Medicine.


The study will be published in a special issue of Proceedings of the National Academy of Sciences on October 28. Gruen and first author Haiying Meng will also present the findings that same day at the American Society of Human Genetics (ASHG) meeting in Salt Lake City, Utah.

Gruen and co-authors used a statistical approach to study and compare specific DNA markers in 153 dyslexic families. "We now have strong statistical evidence that a large number of dyslexic cases--perhaps as many as 20 percent--are due to the DCDC2 gene," said Gruen. "The genetic alteration on this chromosome is a large deletion of a regulatory region. The gene itself is expressed in reading centers of the brain where it modulates migration of neurons. This very architecture of the brain circuitry is necessary for normal reading."

To facilitate reading, brain circuits need to communicate with each other. In reading disabilities, these circuits are disrupted. In people with dyslexia, compensatory brain circuits are inefficient and they have a hard time learning to read.

Locating this gene provided researchers with part of the reason why dyslexia occurs. Gruen said discovery of the gene and its function will lead to early and more accurate diagnoses and more effective educational programs to address the unique needs and special talents of people with dyslexia.

"We can’t continue the cookie cutter, one-size-fits-all schooling anymore," said Gruen. "People with dyslexia are not less intelligent than others, they just learn in different ways. Tailoring programs to fit the needs of these children will enhance their success in school and be more cost effective."

Other authors on the study were Shelley D. Smith, Karl Hager, Matthew Held, Jonathan Liu, Richard K. Olson, Bruce F. Pennington, John C. DeFries, Joel Gelernter, Thomas O’Reilly-Pol, Stefan Somlo, Pawel Skudlarski, Sally E. Shaywitz, Bennett A. Shaywitz, Karen Marchione, Yu Wang, Murugan Parmasivam, Joseph J. LoTurco and Grier P. Page.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>