Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformer Alga

28.10.2005


Who would get mixed with a hefty chap two meters high? There would be few those who wish. Just imagine that in a moment of danger this “hefty chap” becomes thrice as large... Is it fantasy? It is, if we are talking about people. But if it comes to unicellular algae, it is a typical scenario provided by nature for them. The scenedesmus unicellular alga grows thrice as large in presence of predators - cladoceran and rotifers that eat up unicellular algae. This is a defence mechanism as rotifers are unable to swallow such big cell.



This interesting peculiarity of the scenedesmus unicellular alga was investigated by the researchers of the Zoological Institute (Russian Academy of Sciences) in St. Petersburg. They managed to prove that the cell’s “image change” occurs at the genetic level at the point of transcription - information read-out from DNA.

To ascertain the transformation mechanism the researchers applied the actinomycin D inhibitor, which blocks read-out of hereditary information from DNA and, as a result, protein synthesis. An alga specimen was cultivated in a lean solution of chemical fertilizers. For the first experiment, the alga was transplanted into two glasses with rotifers that started to eat up the algae. The researchers added actinomycin D in one of the vessels, the other remaining intact for comparison.


In the vessel without the stopping agent, the algae began to grow up promptly to avoid being swallowed by the predator. In the vessel with added actinomycin D, big “defensive” forms of scenedesmus almost did not appear, and rotifers could banquet in cold blood.

The next manipulation with algae repeated the first one but vice versa. From the vessel, where the cells had grown up in size for defense purposes, “starving” rotifers were removed. Then the specimen was again divided in two, and actinomycin D was added into one vessel. In inhibitor’s presence, the scenedesmus algae remained big, while in pure water without rotifers the cells grew small again.

The researchers came to the conclusion that actinomycin D blocks the scenedesmus’ genetic programs “switch”, as a result the alga stops reacting to the predator’s appearance or disappearance.

Biologists discovered long ago formation of “defensive forms” with scenedesmus and species close to it in response to appearance of algae-eating cladoceran and rotifers nearby. Besides, for the purpose of defense these low plants often live singly or in small colonies, but as soon as filtrating organisms appear in the water, the cells not only grow up several times larger but they also assemble in more multitudinous colonies. The predator detection signal is the substances excreted by algae into the water. The researchers believe that many millions of years ago such unicellular colonies, that are formed in periods of danger according to genetically coded scheme, could become one of the steps towards multicellular creatures.

Some infusoria have a similar technique for protection from predators. By the way, microbiologists have recently carried out a similar investigation with one of them - Euplotes infusorium. It has turned out that actinomycin D impacts the protozoa’s outward appearance. That means that with infusoria that belong to animal organisms, the choice of strategy in response to predator’s appearance also takes place at the genetic level.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>