Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformer Alga

28.10.2005


Who would get mixed with a hefty chap two meters high? There would be few those who wish. Just imagine that in a moment of danger this “hefty chap” becomes thrice as large... Is it fantasy? It is, if we are talking about people. But if it comes to unicellular algae, it is a typical scenario provided by nature for them. The scenedesmus unicellular alga grows thrice as large in presence of predators - cladoceran and rotifers that eat up unicellular algae. This is a defence mechanism as rotifers are unable to swallow such big cell.



This interesting peculiarity of the scenedesmus unicellular alga was investigated by the researchers of the Zoological Institute (Russian Academy of Sciences) in St. Petersburg. They managed to prove that the cell’s “image change” occurs at the genetic level at the point of transcription - information read-out from DNA.

To ascertain the transformation mechanism the researchers applied the actinomycin D inhibitor, which blocks read-out of hereditary information from DNA and, as a result, protein synthesis. An alga specimen was cultivated in a lean solution of chemical fertilizers. For the first experiment, the alga was transplanted into two glasses with rotifers that started to eat up the algae. The researchers added actinomycin D in one of the vessels, the other remaining intact for comparison.


In the vessel without the stopping agent, the algae began to grow up promptly to avoid being swallowed by the predator. In the vessel with added actinomycin D, big “defensive” forms of scenedesmus almost did not appear, and rotifers could banquet in cold blood.

The next manipulation with algae repeated the first one but vice versa. From the vessel, where the cells had grown up in size for defense purposes, “starving” rotifers were removed. Then the specimen was again divided in two, and actinomycin D was added into one vessel. In inhibitor’s presence, the scenedesmus algae remained big, while in pure water without rotifers the cells grew small again.

The researchers came to the conclusion that actinomycin D blocks the scenedesmus’ genetic programs “switch”, as a result the alga stops reacting to the predator’s appearance or disappearance.

Biologists discovered long ago formation of “defensive forms” with scenedesmus and species close to it in response to appearance of algae-eating cladoceran and rotifers nearby. Besides, for the purpose of defense these low plants often live singly or in small colonies, but as soon as filtrating organisms appear in the water, the cells not only grow up several times larger but they also assemble in more multitudinous colonies. The predator detection signal is the substances excreted by algae into the water. The researchers believe that many millions of years ago such unicellular colonies, that are formed in periods of danger according to genetically coded scheme, could become one of the steps towards multicellular creatures.

Some infusoria have a similar technique for protection from predators. By the way, microbiologists have recently carried out a similar investigation with one of them - Euplotes infusorium. It has turned out that actinomycin D impacts the protozoa’s outward appearance. That means that with infusoria that belong to animal organisms, the choice of strategy in response to predator’s appearance also takes place at the genetic level.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>