Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows that environment is a major factor in addiction recovery

28.10.2005


New research in monkeys suggests that, although living in an "enriched" environment can make someone less vulnerable to abusing cocaine, once started, extended drug abuse can eliminate the social advantage the abuser originally had.



However, the research also shows that prolonged abstinence from drug use can give the recovering addict another chance, and that environment again becomes a major factor influencing the success of the recovery.

Michael A. Nader, Ph.D., professor of physiology/pharmacology and of radiology at Wake Forest University Baptist Medical Center, delivered those findings today in a course for medical professionals presented by the American Society of Addiction Medicine (ASAM).


Nader said the animal research has important implications for physicians and other practitioners working with human addicts. "The most important thing that we have shown is that environmental enrichment can protect the individual from the likelihood that they’ll abuse cocaine.

"There have been many studies that show that stress – the other end of that continuum – can increase the likelihood that an individual will abuse drugs. We’ve gone to the other side of that and shown that enrichment can actually protect the individual from drug abuse."

The ASAM course, "Addiction Across the Lifespan," was scheduled to include presentations by Paul Greengard, Ph.D., a Nobel laureate, and Nora Volkow, M.D., director of the National Institute on Drug Abuse.

Nader, one of only three animal researchers included on the program, told the group that research has focused both on behavioral patterns and on actual physiological changes in brain chemistry in animal models. He said that the animal research can verify hypotheses that can’t be tested in human subjects, due to ethical considerations.

The physiological aspects have dealt with the chemistry of dopamine, a major neurotransmitter in the brain. Cocaine increases levels of dopamine, which is apparently the cause of the intense but fleeting euphoria experienced by cocaine users. Increased levels of dopamine over long-term cocaine use causes the brain to adjust by reducing the number of dopamine (D2) "receptors."

Nader said that research has shown that social "rank" in animal populations has a significant effect on whether a monkey will take cocaine. That effect has a direct correlation with the level of D2 receptors a monkey has, as measured by noninvasive brain imaging: Dominant monkeys have more D2 receptors and are less likely to abuse cocaine than the subordinate monkeys.

But, he said, the monkeys don’t start out that way. It is the social environment itself that creates the difference in brain chemistry over time. Monkeys that become dominant have an enriched environment – more freedom, less fear, more grooming by other monkeys – while the subordinates live with more stress.

New research, Nader said, has shown that after the dominant monkeys start abusing cocaine, their D2 receptors decrease over time. Once they are taken off cocaine, however, the D2 receptors increase again with six to nine months’ abstinence. And, given the opportunity to use cocaine again, he hypothesizes that they will be less likely to relapse, compared with the subordinate monkeys.

Nader and colleague Paul W. Czoty, Ph.D., assistant professor of physiology and pharmacology, described the recent research in a paper published in August in the American Journal of Psychiatry.

Nader said that human examples of environmental enrichment include a job, educational opportunity, and strong family support.

And he said that practitioners and family members must understand the importance of abstinence. In humans, he said, it could take years for the brain to recover, but he believes it can eventually. "You have to remove them from the environment that they’re in where the drugs are being taken, because the environment has huge effects on the dopamine system and on the likelihood that they’ll take drugs," Nader said.

When they are abstinent, they can return to normal. "Some people have a view that once you’re addicted, you’re always addicted, and I think part of that is because of the environment.

"These data could argue that the brain does bounce back. It’s not a permanent change," Nader said. "They’re not damned because they’ve been taking cocaine. Things can return. I think that’s a promising message – that, and the fact that the environment can, in fact, protect the individual." Current research, he said, is testing whether non-addictive drugs that increase the D2 receptors in the brain could have the same effect as an enriched environment, and therefore protect a recovering addict against relapse.

Mark Wright | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>