Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for B-cell development factor might be involved in multiple sclerosis

28.10.2005


A gene involved in B-cell development might play a role in multiple sclerosis. The results of a large study published today in the open access journal BMC Neurology reveal that multiple sclerosis (MS) patients are more likely to carry two specific genetic variations in the Early B-cell factor gene (EBF-1), than healthy individuals.



These variations – or polymorphisms - could play a causative role in MS or be located near other polymorphisms that do play a causative role in the disorder. As such, they could be used as genetic markers for MS.

Alfonso Martinez and colleagues from the Hospital Clinico San Carlos, in Madrid, Spain, who carried out the research, suggest that EBF-1 might be involved in MS due to its role in axonal damage. "Axonal damage is a hallmark for multiple sclerosis," write the authors, and EBF is involved in the expression of proteins essential for axonal pathfinding. How axonal damage occurs in MS, however, is not well understood.


In their study, Martinez et al. compared the occurrence of a polymorphism at a single point in the DNA sequence of the gene EBF-1 – also called a single nucleotide polymorphism (SNP) - in 356 patients diagnosed with MS and 540 healthy individuals acting as controls. Both groups consisted of white Spanish individuals. The authors also compared the variants of a microsatellite – a highly variable, short stretch of non-coding DNA within the EBF-1 gene - in the two groups.

Their results show that patients with MS are more likely to carry the base adenine in the SNP analysed, than controls (p=0.02). In addition, one specific version (allele) of the microsatellite was more frequently found in MS patients than in controls (p=0.08). The authors confirmed this finding with a Transmission Disequilibrium Test: a study of the transmission rate of the allele in 53 patients and their parents, which showed that the allele was more likely to be present in both patients and their parents than other alleles.

MS is one of the most common neurological diseases in the Western world. It has traditionally been considered an autoimmune disorder of the central nervous system, and it is likely to be the result of a complex combination of genetic and environmental factors.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Perfect imperfection
03.05.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>