Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists say fused genes trigger the development of prostate cancer

28.10.2005


Discovery could lead to prostate-cancer-specific diagnostic test and more effective treatment



Scientists at the University of Michigan Medical School, in collaboration with researchers at Harvard’s Brigham and Women’s Hospital, have discovered a recurring pattern of scrambled chromosomes and abnormal gene activity that occurs only in prostate cancer.

In a paper being published in the Oct. 28 issue of Science, the research team indicates that these chromosomal rearrangements induce specific genes to merge, creating what scientists call a gene fusion. U-M researchers detected the unique molecular signature of these fused genes in the majority of prostate cancer tissue samples they analyzed, but found no evidence of gene fusion in benign prostate tissue or in prostate tissue with non-cancerous changes.


"The data in our study provides tantalizing evidence that gene fusion is the causative agent - the initiating event - in prostate cancer," says Arul M. Chinnaiyan, M.D., Ph.D., the S.P. Hicks Collegiate Professor of Pathology in the U-M Medical School, who directed the study. "It’s what drives the aberrant over-expression of cancer-causing genes and is the first step in the progression of tissue changes leading to prostate cancer."

Because this particular gene fusion occurs only in prostate cancer, a diagnostic test to detect, in blood or urine, the fused genes or their protein products would be specific for prostate cancer and far more accurate than current screening tests, according to Chinnaiyan. And if scientists could find a way to block the gene, it could be the basis for a new, effective treatment for prostate cancer.

According to the American Cancer Society, more American men will be diagnosed with prostate cancer this year than with any other type of cancer. The American Cancer Society estimates that, in 2005, 232,000 men in the United States will be diagnosed with prostate cancer and 30,350 men will die from the disease. It is the second most common cause of cancer-related deaths in men.

"Studying gene alterations in prostate cancer is difficult, and as a result there has never been a clear identification of recurrent, non-random genetic rearrangements," says Jacob Kagan, Ph.D., program director for the Cancer Biomarkers Research Group at the National Cancer Institute, a sponsor of the research study. "This finding is an important advance, because it suggests that similar mechanisms may be involved in other epithelial cancers, such as breast, lung and colon."

The abnormal gene fusion associated with prostate cancer occurs when one of two genes, ERG or ETV1, merges with a prostate-specific gene called TMPRSS2. ERG and ETV1 are members of the ETS family of transcription factors, which are known to be involved in the development of a bone cancer called Ewing’s sarcoma, and other types of cancer.

While rearrangements in chromosomes and fused genes have been detected in blood cell cancers like leukemia and lymphoma, and in Ewing’s sarcoma, this is the first time they have been found in a common solid tumor like prostate cancer, which develops in epithelial cells lining the prostate gland.

"This is a paradigm shift for all epithelial tumors - such as cancers of the lung, breast, colon, ovary, liver and prostate - which are the most common types of cancer and account for most deaths due to cancer," says Chinnaiyan, who directs the Bioinformatics Core at the U-M Comprehensive Cancer Center. "We knew gene rearrangements were involved in hematologic malignancies and sarcomas. But finding this recurrent chromosomal rearrangement in prostate cancer suggests that other common epithelial cancers have their own recurrent chromosomal rearrangements. We just haven’t found them yet."

A bioinformatics analysis method called Cancer Outlier Profile Analysis (COPA) developed by Scott A. Tomlins and Daniel R. Rhodes, U-M graduate students working in Chinnaiyan’s laboratory, made it possible for the research team to detect extremely high expression levels of outlier genes, including ERG and ETV1, in 132 gene expression microarray datasets and six independent prostate cancer profiling studies.

U-M scientists also used laboratory analysis techniques and gene sequencing to detect gene fusions between TMPRSS2 and ERG or ETV1 in prostate cancer tissue samples. "Of 22 cases with high expression of ERG or ETV1, 91 percent showed evidence of a fusion with TMPRSS2," said Scott Tomlins, a U-M graduate student in pathology and first author of the Science paper. "Our results indicate that more than half of all prostate cancer cases have one of these two fusions."

Tomlins adds that TMPRSS2 may fuse to other members of the ETS family, in addition to ERG and ETV1. "We think there are more fusions. We just haven’t found them yet," he says. "To develop a diagnostic test with full sensitivity, it will be important to identify all the molecular fusions, and we are working on that now."

"We are especially excited by the profound implications these findings have for the treatment of prostate cancer," Chinnaiyan says. "It will allow us to categorize prostate tumors by molecular sub-type, which could help determine the most effective treatment for each patient."

"This collaborative effort has yielded an important molecular biomarker that will help us better detect prostate cancer and ultimately help clinicians determine the risk of dying from the disease," says Mark A. Rubin, M.D., chief of urologic pathology at Brigham and Women’s Hospital, who is also an associate professor of pathology at Harvard Medical School and a co-author on the paper.

In future research, U-M scientists hope to identify small molecule inhibitors for the genes involved in prostate cancer, which would be analogous to Gleevec - a drug designed to target the BCR-ABL gene fusion that causes chronic myelogenous leukemia. The U-M research team plans additional studies to verify that gene fusion induces prostate cancer in research animals. And they will search for recurrent chromosomal rearrangements in other common epithelial cancers.

The research was supported by the National Cancer Institute’s Early Detection Research Network, the National Cancer Institute’s Specialized Program of Research Excellence in Prostate Cancer, the American Cancer Society, the Department of Defense, the U-M Comprehensive Cancer Center Bioinformatics Core and the U-M Medical Scientist Training Program.

The University of Michigan has filed a provisional patent application on this research technology.

Additional research collaborators from U-M include research fellows Saravana Dhanasekaran, Ph.D., Rohit Mehra, M.D., and Sooryanarayana Varambally, Ph.D.; Xuhong Cao, research associate; James Montie, M.D., the Valassis Professor of Urological Oncology; Rajal B.Shah, M.D., clinical assistant professor of pathology; and Kenneth J. Pienta, M.D., professor of internal medicine and urology. Additional collaborators from Brigham and Women’s Hospital include Sven Perner, Xiao-Wei Sun, Joelle Tchinda and Charles Lee. Rainer Kuefer from the University of Ulm in Germany also collaborated in the research study.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu
http://www.mcancer.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>