Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


California computer scientists double volume of data in NIH biotech repository


Faster Computation of Haplotypes Provides Insight into Genetic Basis of Human Disease

High-throughput sequencing of an individual’s DNA yields a map of genetic variation which can give clues to the genetic underpinning of human disease. The current technologies collect genotypes, or information from the individual’s two chromosomes. Yet many scientists believe that drilling down to the variations between individuals’ DNA at the level of each chromosome -- so-called haplotypes -- will permit more accurate study of genetic differences and their consequences for medical research and the study of evolution.

Experimental methods for deriving these haplotypes are expensive and time-consuming. But now experts in bioinformatics at two California research institutes have used a different, very fast and relatively low-cost computational tool to ’crunch’ the world’s largest repository of genotypes to predict their haplotypes -- and they did so in less than 24 hours, approximately 1,000 times faster than the prevailing technology until now. Their findings are featured in a special issue of the journal Genome Research, published today.

"This information provides an invaluable resource for understanding the structure of human genetic variation," said lead author Eleazar Eskin, a professor of computer science and engineering at the University of California, San Diego who is affiliated with the California Institute for Telecommunications and Information Technology (Calit2). "A deeper understanding of the data will improve the design of studies that look for associations between certain genes and disease or inherited conditions."

The team from UCSD and the International Computer Science Institute (ICSI) processed all 286 million human genotypes in the dbSNP database of the National Center for Biotechnology Information (NCBI), part of National Institute of Health’s National Library of Medicine. The repository includes all publicly available data on single nucleotide polymorphisms (SNPs), which are sites in the DNA sequence where individuals differ at the level of nucleotides.

These SNPs (pronounced snips) are locations in the human DNA sequence where two possible bases occur in the population. SNPs account for the most common type of variation in DNA sequence in humans and due to the recently developed high-throughput genotyping technology, genotype information on an individual’s SNPs can be collected very cheaply.

Enter computational biologists around the world who have been devising ways to infer or extrapolate these haplotypes from the flood of genotype data produced by DNA sequencing efforts. Eskin and Ph.D. candidates Noah Zaitlen and Hyun Min Kang at UCSD, and research scientist Eran Halperin at ICSI, worked with NCBI scientists Michael Feolo and Stephen Sherry to infer haplotypes based on all of the data from genotyping studies deposited in NCBI’s dbSNP database. Rather than use standard methods for inferring haplotypes, the computer scientists used HAP, a software tool originally developed at ICSI by Halperin and Richard Karp in collaboration with Eskin.

They ran the HAP algorithm on all dbSNP data sets using a cluster of 30 Intel Xeon processors provided by Calit2’s National Science Foundation-funded OptIPuter project, in cooperation with the National Biomedical Computation Resource. Both organizations are based at UCSD. "In under 24 hours we were able to process more than 286 million haplotypes, partition those haplotypes into blocks, or regions, of limited diversity, and determine a set of ’tag’ SNPs that capture the majority of genetic variation," explained Halperin.

The researchers’ article appears in a special issue of Genome Research on "Human Genetic Variation," and its publication coincides with the release of a wide-ranging genotype study by the International HapMap Consortium in the journal Nature. The group’s HapMap is a map of haplotype blocks and the tag SNPs that identify the haplotypes from a database of 160 million genotypes of 270 individuals from four different populations with ancestors from parts of Africa, Asia and Europe. The HapMap data is a major resource for understanding the structure of human variation and the genetic basis of human disease.

All of the HapMap data is deposited in NCBI and was made available to the California researchers for their computation, along with more than a dozen other data sets, including the second-largest behind HapMap: 110 million genotypes published earlier this year by a consortium led by Perlegen Sciences.

"The speed with which we are able to compute the entire dbSNP database of genotypes is a combination of the speed of our algorithm and the computational resources that allowed us to do it so quickly," explained Eskin, a professor in UCSD’s Jacobs School of Engineering. "We have demonstrated that haplotype phasing can be done routinely every time there is a new release of data deposited in the NCBI database."

"By reducing the waiting time to just 24 hours, NCBI can make it an integral part of the build cycle for dbSNP," said NCBI’s Stephen Sherry. "Every time there is a new release of polymorphism and human variation information in our database, our colleagues in California will be able to re-compute the haplotypes and tag SNPs." To underscore that point, in early October the researchers ran another complete computation on an updated version of the NCBI database that has not yet been made public.

ICSI’s Halperin notes that working with the entire dbSNP database showed that HAP works well on diverse data sets. "The challenge of analyzing such a large dataset is enormous, since the integration of the different datasets is not a simple task," explained the research scientist. "In particular, different data sets have different characteristics, and one has to take this into account. This project demonstrates the ability of HAP to efficiently deal with different types of data, for instance, unrelated or related individuals." Indeed, for the project, Halperin extended the HAP algorithm to work with ’trios’ -- where genotypes are available for a mother, father and their child -- taking into account that haplotypes of the children are copies of the haplotypes of the parents.

As a side effect of their research, the computer scientists are now depositing 15 gigabytes of data into dbSNP, and their article in Genome Research aims to encourage the research community to use the data depository as a scientific resource. Researchers can use these reference data sets as tools to guide their own studies into the genetic basis of common diseases.

To that end, the team’s next collaboration with NCBI researchers will be to help design disease-association studies. "If a researcher is interested in a specific gene, we can use all the available data to come up with how to design the experiment," said Eskin. "We can tell how many individuals’ genotypes need to be sequenced - and how many and which SNPs to collect - to minimize the cost and processing power needed for the most effective study correlating genetic data and the incidence of disease."

Disease association research is the main reason why the group from Calit2 and ICSI opted to identify tag SNPs across the entire NCBI database and make all of them available to the research community. Said Halperin: "If you are going to perform a disease association study, it’s more economical to use these tag SNPs than the entire data."

Doug Ramsey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>