Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVa Researchers Show that a Natural Carbohydrate can Help Lower Blood Sugar

27.10.2005


A carbohydrate isolated from the liver lowers blood sugar levels after it is injected into diabetic rats, according to research carried out by a team of experts at the University of Virginia Health System. The UVa team believes this compound, called D-chiro-Inositol-Galactosamine, or INS2, acts as a messenger inside cells to switch on enzymes that regulate blood sugar, taking glucose from the bloodstream into the liver and muscles where it is stored. INS2 is naturally occurring in the body and is found in human blood.



Their findings are published in the Oct. 4, 2005 issue of the journal Biochemistry and could lead to new drugs to treat type 2 diabetes, the most common form of the disease. In type 2, the blood has normal or high levels of the insulin, but the liver and muscles don’t respond well to the hormone. As a result, blood sugar stays high, causing health problems. Diabetes is a known risk factor for nerve and kidney damage, stroke, heart disease and blindness, among other complications. Some scientists think that the complications are due to modifications in certain proteins and in how genes respond to insulin.

“We believe this molecule works by sending a message inside the cell to respond to insulin, which helps cells dispose of excess glucose,” said Joseph Larner, MD, PhD, professor emeritus at UVa and former chairman of the department of pharmacology, who has been studying the molecule for nearly two decades.


Larner and his colleagues isolated INS2 from cow livers, determined its chemical structure, synthesized it, then injected the compound into diabetic rats, with blood sugar levels at or above 500 milligrams per deciliter. The rats were then injected with insulin. Diabetes researchers at UVa were pleased that the more compound they injected, the more blood sugar decreased in the animals. “This compound is dose dependent and active. It potentiates the action of insulin,” explained David Brautigan, PhD, director of the Center for Cell Signaling at UVa.

Larner and Brautigan are part of a multi-disciplinary team at UVa that includes chemist Milton Brown and structural biologist John Bushweller. Using computer modeling, they docked the INS2 compound onto an enzyme in cells called PP2C. If INS2 could activate PP2C, it would trigger other events in cells activated by insulin.

“INS2 was added and the purified PP2C enzyme was activated,” Brautigan said. “When we changed one amino acid in PP2C that the modeling predicted was the site for INS2, then the activation by INS2 was absent. In that way the enzyme assay confirmed the model.” The UVa group has been working to define the action of INS2 in hopes that it will potentially help millions of diabetics worldwide. A 3D image of the molecule graces the cover of Biochemistry’s Oct. 4th issue.

Brautigan, D.L. et al. (2005) Biochemistry 44, 11067-11073

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>