Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral gene therapy makes males more faithful and friendly

25.09.2001


Vole mates: gene makes males more receptive.
© L. Pitkow et al.


Spells and incantations step aside: scientists have found a genetic elixir of love. It makes males more faithful to females and more friendly to fellow males. It could also shed light on bonding disorders such as autism.

Larry Young of Emory University in Georgia and colleagues used a virus to deliver a gene straight to the part of voles’ brains responsible for rewards and addiction, the ventral pallidum. The gene made the animals’ brains more receptive to the hormone vasopressin1.

"Something about having more vasopressin receptors makes interacting with another individual more rewarding," says Young. The ventral pallidum, at the bottom front of vole and human brains, is believed to reinforce pleasurable experiences.



Male voles were placed in a cage with a female for 17 hours, then caged with that female and another similar female. Gene-treated voles much preferred the known female. Untreated voles, or those given the gene in a different brain region, showed no preference.

This is the first time a virus carrying a gene to the brain has changed a complex behaviour, says Stafford Lightman, a hormone specialist at Bristol University. "It’s quite remarkable, and almost frightening, that you can change bonding behaviour just by changing this one receptor," he says.

Young speculates that a dearth of vasopressin receptors in the ventral pallidum could be a cause of autism, a condition that hampers people from bonding with others. "Problems with this system could be responsible for some of these social deficits," he says.

Addicted to love

Human brain-imaging research has implicated the ventral pallidum in romantic love and in drug addiction. It’s not surprising that the same region might be responsible for both, Young says: "People have always thought of love as an addiction."

Experiments show that animals in cages with striped walls injected with cocaine into their ventral pallidum seek out striped walls. They associate the wall pattern with the euphoria of the drug, Young says.

"Perhaps pair bonding is a similar thing," he suggests. "When a vole mates with a female, vasopressin is released in his brain, which stimulates the ventral pallidum. He gets a reward, and associates it with that female."

Vasopressin may also be associated with anxiety. Voles given the vasopressin receptor gene in the ventral pallidum were more anxious than normal: they ventured out into the open less often.

"This helps explain something we already know: that attachments often happen after a stressful experience," says Sue Carter of the University of Illinois, Chicago, who specializes in rodent and human hormones.

"Hormones released when animals are stressed could pave the way for new relationships," she says. "Animals form social bonds when they need them."


References

  1. Pitkow, L. et al. Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. Journal of Neuroscience, 21(18), 7392 - 7396, (2001).

ERICA KLARREICH | Nature News Service
Further information:
http://www.nature.com/nsu/010927/010927-4.html

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>