Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein aggregates in Lou Gehrig’s disease linked to neuron death

27.10.2005


French neurologist Jean-Martin Charcot first described amyotrophic lateral sclerosis (ALS) in 1869, but, nearly 140 years later, little is known about the cause of the devastating neurodegenerative disease, and there is no cure.



What is known about Lou Gehrig’s disease, as it is commonly called, is that misfolded and damaged proteins clump together in cells to form aggregates and motor neurons die. But scientists have long debated whether or not the protein aggregates actually kill the cells.

Now a research team at Northwestern University, using mammalian neurons and live-cell time-lapse spectroscopy, has become the first to clearly link the presence of the ALS-associated mutant SOD1 protein aggregates with neuronal cell death. This evidence could help explain the disease process and eventually lead to new therapeutics.


In the study, published this month in the Journal of Cell Biology, the scientists looked one at a time at neuronal cells expressing the mutant SOD1 protein and found that in cells where the protein accumulated and aggregates formed, 90 percent of the cells went on to die. (They died between six and 24 hours after aggregates were visually detected.) Cells that did not form aggregates did not die.

The study also provides a new understanding of the structure and composition of the deadly aggregates -- one of the first studies to do so.

"We found that these aggregates are quite peculiar and very different from the aggregates formed in Huntington’s disease," said Richard I. Morimoto, Bill A. and Gayle Cook Professor in Biological Sciences, who led the study. Morimoto is an expert in Huntington’s disease and on the cellular response to damaged proteins.

"In Huntington’s, the aggregate is very dense and impenetrable and binds irreversibly with other molecules in the cell," he said. "In ALS, the aggregates are amorphous, like a sponge. Other proteins can go through the structure and interact with it, which may help explain why mutant SOD1 is so toxic." Morimoto believes this surprising finding indicates that the structure of aggregates associated with other neurodegenerative diseases such as Parkinson’s and Alzheimer’s will be found to be different as well.

Looking at individual cells in a population, the researchers also found that cells side by side did different things. In cells expressing the same amount of damaged protein, some cells formed aggregates and died and others did not form aggregates and lived. Only a certain subset of at-risk cells went on to lose function and die.

"It would be terrifying if 100 percent of the cells expressing mutant proteins died," said Morimoto. "This means that in many cases the cell’s protective machinery suppresses the damaged proteins, keeping the cell healthy. This discovery will be important to scientists looking to develop genetic suppressors and therapeutics."

Morimoto’s team focused on SOD1 because it is a form of familial (hereditary) ALS in which a mutation in just one gene and its associated protein has devastating consequences to the cell. (Approximately 10 percent of ALS cases are familial.) This provides experimentalists with a powerful framework. For the other 90 percent the disease is not the result of one mutation but rather a series of many genetic events that debilitate motor neurons. With non-familial forms it is extremely difficult to design hypothesis-based experiments, said Morimoto.

The next question the researchers plan to address is what are the events that lead to cell death once mutant SOD1 protein aggregates form in the cell? This knowledge would help scientists identify small molecules that could halt, arrest or reverse the disease process.

In addition to Morimoto, other authors on the Journal of Cell Biology paper are Carina I. Holmberg, Soojin Kim, Gen Matsumoto (lead author) and Aleksandar Stojanovic, all formerly from Northwestern University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>