Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sisyphean movement of motor proteins may help preserve DNA integrity

27.10.2005


Researchers studying how proteins called helicases travel along strands of DNA have found that when the proteins hit an obstacle they snap back to where they began, repeating the process over and over, possibly playing a preventative role in keeping the genome intact.


A helicase (blue) moves rapidly on a highly flexible DNA track. Such movement may prevent the accumulation of toxic proteins on the DNA. Graphic courtesy Taekjip Ha



Taekjip Ha, a professor of physics at the University of Illinois at Urbana-Champaign and a Howard Hughes Medical Institute investigator, likens the biological scenario to Boston Red Sox baseball; the team rolls along only to hit a late-season obstacle called the New York Yankees. Then, like the always-anticipated annual cry from Chicago Cubs fan, it’s back to square one next year.

However, instead of causing more misery, as is the case for a baseball fan, this motor protein’s starting over may serve a beneficial purpose, clearing other, undesired proteins from the DNA, Ha said. The research was done in vitro, using purified proteins and studied with a technique that visualizes individual molecules on DNA. Whether the scenario plays out in real cells in not known and under exploration.


The discovery appears in the Oct. 27 issue of the journal Nature, along with a separate "News & Views" article by Eckhard Jankowsky, a biochemist at the Center for RNA Molecular Biology in Case Western University’s School of Medicine, who wrote about the potential importance of the findings.

Ha’s postdoctoral fellow Sua Myong led the study, looking at the Rep helicase from an E-coli bacterium. Rep is known to be involved in restarting DNA replication stalled by DNA damage. As a single protein, a monomer, Rep can travel one way along a single strand of DNA but by itself cannot unzip it. Rep’s progress was visualized using the single molecule fluorescence resonance energy transfer (FRET) technique that Ha had developed.

By tagging the protein and DNA with green and red dyes, Myong measured FRET changes as Rep traveled along single DNA strands, which are short segments extending out from double strands. Each time the protein reached either the junction of the full double-stranded DNA or hit an artificially created protein obstacle, Rep instantly returned to near the beginning of the single strand on which it had initially bound.

Upon closer examination using FRET, researchers discovered that Rep’s configuration gradually closed as it reached the obstacle in its path. Then, conformational changes of Rep allow it to grab and transfer to the end of the single-stranded DNA, leading to the next cycle.

"Although the very flexible single strand of DNA likely bombards the protein constantly, the protein doesn’t seem to pay attention to this overture until it hits a physical blockade," Ha said.

Researchers had theorized that obstacles would force motor proteins to disengage from DNA. "The finding was totally unexpected and may indicate a new function for the protein," Ha said. Jankowsky wrote that scientists "should not immediately search for the helix that the enzyme unzips, but instead remember how Rep snaps back."

In cells, single strands of DNA often occur when something is wrong, Ha said. The recycling action, he said, may represent a desirable function of the protein by keeping it engaged on a single strand, allowing time for repairs that allow normal DNA replication.

The human body has more than 200 types of helicases involved in replication, transcription, repair and other genetic processes, Ha said. Defective helicases have been linked to increased cancer risks and premature aging.

Co-authors with Myong and Ha were Ivan Rasnik, a former postdoctoral fellow who now is a professor of physics at Emory University in Atlanta; Chirlmin Joo, a doctoral student in Ha’s lab; and Timothy M. Lohman, a professor of biochemistry and molecular biophysics at the Washington University School of Medicine in St. Louis.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>