Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modifications render carbon nanotubes nontoxic

27.10.2005


Rice team mitigates toxicity of tiny cylinders with chemical changes



In follow-on work to last year’s groundbreaking toxicological study on water-soluble buckyballs, researchers at Rice University’s Center for Biological and Environmental Nanotechnology (CBEN) find that water-soluble carbon nanotubes are significantly less toxic to begin with. Moreover, the research finds that nanotubes, like buckyballs, can be rendered nontoxic with minor chemical modifications.

The findings come from the first toxicological studies of water-soluble carbon nanotubes. The study, which is available online, will be published in an upcoming issue of the journal Toxicology Letters.


The research is a continuation of CBEN’s pioneering efforts to both identify and mitigate potential nanotechnology risks.

"Carbon nanotubes are high-profile nanoparticles that are under consideration for dozens of applications in materials science, electronics and medical imaging," said CBEN Director Vicki Colvin, the lead researcher on the project. "For medical applications, it is reassuring to see that the cytotoxicity of nanotubes is low and can be further reduced with simple chemical changes."

Research has been conducted on the toxicity of carbon nanotubes, but CBEN’s is the first to examine the cytotoxicity of water-soluble forms of the hollow carbon molecules. In their native state, carbon nanotubes are insoluble, meaning they are incompatible with the water-based environment of living systems. Solubility is a key issue for medical applications, and researchers at Rice and elsewhere have developed processing methods that render nanotubes soluble. In particular, scientists are keen to exploit the fluorescent properties of carbon nanotubes for medical diagnostics.

Nanotubes are long, hollow molecules of pure carbon with walls just one atom thick. They are related to buckyballs, tiny spheres of pure carbon that are about the same diameter.

In previous studies with buckyballs, CBEN found that even minor surface modifications could dramatically reduce cytotoxicity. The nanotube study found similar results. In both cases, the researchers identified specific alterations that reduce toxicity.

Cytotoxicity refers to toxic effects on individual cells. In cytotoxicological studies, identical cell cultures are exposed to various forms and concentrations of toxins. In order to compare the toxicity of different compounds, scientists look for the concentration -- typically measured in parts per million or parts per billion -- of materials that lead to the death of 50 percent of the cells in a culture within 48 hours.

In the current study, CBEN researchers exposed skin cell cultures to varying doses of four types of water-soluble single-walled carbon nanotubes, or SWNTs. The four included pure, undecorated SWNTs suspended in soapy solution and three forms of nanotubes that were rendered soluble via the attachment of the chemical subgroups hydrogen sulfite, sodium sulfite and carboxylic acid.

The cytotoxicity of undecorated SWNTs was 200 parts per billion, which compares to the level of 20 parts per billion identified last year for undecorated buckyballs.

The modified nanotubes were non-cytotoxic. While cell death did increase with dose concentration, cell death never exceeded 50 percent for these compounds, which were each tested to a level of 2,000 parts per million. Just as with buckyballs, CBEN found that higher degrees of surface modification led to lower toxicity for SWNTs.

"We now have two studies on carbon nanoparticles that show us how to make them dramatically less cytotoxic," said CBEN Executive Director Kevin Ausman, a co-author of the study. "In both cases, it’s the same answer: change the surfaces. This is an important demonstration that there are general trends in biological responses to nanoparticles."

Co-authors on the paper include graduate students Christie Sayes, Feng Liang, Jared Hudson, Jonathan Beach and Condell Doyle; undergraduate Joe Mendez; research scientists Wenhua Guo and Valerie Moore; Professor of Chemistry Edward Billups; and Jennifer West, the Isabel C. Cameron Professor of Bioengineering, professor of chemical and biomolecular engineering, and director of the Institute of Biosciences and Bioengineering.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>