Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modifications render carbon nanotubes nontoxic

27.10.2005


Rice team mitigates toxicity of tiny cylinders with chemical changes



In follow-on work to last year’s groundbreaking toxicological study on water-soluble buckyballs, researchers at Rice University’s Center for Biological and Environmental Nanotechnology (CBEN) find that water-soluble carbon nanotubes are significantly less toxic to begin with. Moreover, the research finds that nanotubes, like buckyballs, can be rendered nontoxic with minor chemical modifications.

The findings come from the first toxicological studies of water-soluble carbon nanotubes. The study, which is available online, will be published in an upcoming issue of the journal Toxicology Letters.


The research is a continuation of CBEN’s pioneering efforts to both identify and mitigate potential nanotechnology risks.

"Carbon nanotubes are high-profile nanoparticles that are under consideration for dozens of applications in materials science, electronics and medical imaging," said CBEN Director Vicki Colvin, the lead researcher on the project. "For medical applications, it is reassuring to see that the cytotoxicity of nanotubes is low and can be further reduced with simple chemical changes."

Research has been conducted on the toxicity of carbon nanotubes, but CBEN’s is the first to examine the cytotoxicity of water-soluble forms of the hollow carbon molecules. In their native state, carbon nanotubes are insoluble, meaning they are incompatible with the water-based environment of living systems. Solubility is a key issue for medical applications, and researchers at Rice and elsewhere have developed processing methods that render nanotubes soluble. In particular, scientists are keen to exploit the fluorescent properties of carbon nanotubes for medical diagnostics.

Nanotubes are long, hollow molecules of pure carbon with walls just one atom thick. They are related to buckyballs, tiny spheres of pure carbon that are about the same diameter.

In previous studies with buckyballs, CBEN found that even minor surface modifications could dramatically reduce cytotoxicity. The nanotube study found similar results. In both cases, the researchers identified specific alterations that reduce toxicity.

Cytotoxicity refers to toxic effects on individual cells. In cytotoxicological studies, identical cell cultures are exposed to various forms and concentrations of toxins. In order to compare the toxicity of different compounds, scientists look for the concentration -- typically measured in parts per million or parts per billion -- of materials that lead to the death of 50 percent of the cells in a culture within 48 hours.

In the current study, CBEN researchers exposed skin cell cultures to varying doses of four types of water-soluble single-walled carbon nanotubes, or SWNTs. The four included pure, undecorated SWNTs suspended in soapy solution and three forms of nanotubes that were rendered soluble via the attachment of the chemical subgroups hydrogen sulfite, sodium sulfite and carboxylic acid.

The cytotoxicity of undecorated SWNTs was 200 parts per billion, which compares to the level of 20 parts per billion identified last year for undecorated buckyballs.

The modified nanotubes were non-cytotoxic. While cell death did increase with dose concentration, cell death never exceeded 50 percent for these compounds, which were each tested to a level of 2,000 parts per million. Just as with buckyballs, CBEN found that higher degrees of surface modification led to lower toxicity for SWNTs.

"We now have two studies on carbon nanoparticles that show us how to make them dramatically less cytotoxic," said CBEN Executive Director Kevin Ausman, a co-author of the study. "In both cases, it’s the same answer: change the surfaces. This is an important demonstration that there are general trends in biological responses to nanoparticles."

Co-authors on the paper include graduate students Christie Sayes, Feng Liang, Jared Hudson, Jonathan Beach and Condell Doyle; undergraduate Joe Mendez; research scientists Wenhua Guo and Valerie Moore; Professor of Chemistry Edward Billups; and Jennifer West, the Isabel C. Cameron Professor of Bioengineering, professor of chemical and biomolecular engineering, and director of the Institute of Biosciences and Bioengineering.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>