Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modifications render carbon nanotubes nontoxic

27.10.2005


Rice team mitigates toxicity of tiny cylinders with chemical changes



In follow-on work to last year’s groundbreaking toxicological study on water-soluble buckyballs, researchers at Rice University’s Center for Biological and Environmental Nanotechnology (CBEN) find that water-soluble carbon nanotubes are significantly less toxic to begin with. Moreover, the research finds that nanotubes, like buckyballs, can be rendered nontoxic with minor chemical modifications.

The findings come from the first toxicological studies of water-soluble carbon nanotubes. The study, which is available online, will be published in an upcoming issue of the journal Toxicology Letters.


The research is a continuation of CBEN’s pioneering efforts to both identify and mitigate potential nanotechnology risks.

"Carbon nanotubes are high-profile nanoparticles that are under consideration for dozens of applications in materials science, electronics and medical imaging," said CBEN Director Vicki Colvin, the lead researcher on the project. "For medical applications, it is reassuring to see that the cytotoxicity of nanotubes is low and can be further reduced with simple chemical changes."

Research has been conducted on the toxicity of carbon nanotubes, but CBEN’s is the first to examine the cytotoxicity of water-soluble forms of the hollow carbon molecules. In their native state, carbon nanotubes are insoluble, meaning they are incompatible with the water-based environment of living systems. Solubility is a key issue for medical applications, and researchers at Rice and elsewhere have developed processing methods that render nanotubes soluble. In particular, scientists are keen to exploit the fluorescent properties of carbon nanotubes for medical diagnostics.

Nanotubes are long, hollow molecules of pure carbon with walls just one atom thick. They are related to buckyballs, tiny spheres of pure carbon that are about the same diameter.

In previous studies with buckyballs, CBEN found that even minor surface modifications could dramatically reduce cytotoxicity. The nanotube study found similar results. In both cases, the researchers identified specific alterations that reduce toxicity.

Cytotoxicity refers to toxic effects on individual cells. In cytotoxicological studies, identical cell cultures are exposed to various forms and concentrations of toxins. In order to compare the toxicity of different compounds, scientists look for the concentration -- typically measured in parts per million or parts per billion -- of materials that lead to the death of 50 percent of the cells in a culture within 48 hours.

In the current study, CBEN researchers exposed skin cell cultures to varying doses of four types of water-soluble single-walled carbon nanotubes, or SWNTs. The four included pure, undecorated SWNTs suspended in soapy solution and three forms of nanotubes that were rendered soluble via the attachment of the chemical subgroups hydrogen sulfite, sodium sulfite and carboxylic acid.

The cytotoxicity of undecorated SWNTs was 200 parts per billion, which compares to the level of 20 parts per billion identified last year for undecorated buckyballs.

The modified nanotubes were non-cytotoxic. While cell death did increase with dose concentration, cell death never exceeded 50 percent for these compounds, which were each tested to a level of 2,000 parts per million. Just as with buckyballs, CBEN found that higher degrees of surface modification led to lower toxicity for SWNTs.

"We now have two studies on carbon nanoparticles that show us how to make them dramatically less cytotoxic," said CBEN Executive Director Kevin Ausman, a co-author of the study. "In both cases, it’s the same answer: change the surfaces. This is an important demonstration that there are general trends in biological responses to nanoparticles."

Co-authors on the paper include graduate students Christie Sayes, Feng Liang, Jared Hudson, Jonathan Beach and Condell Doyle; undergraduate Joe Mendez; research scientists Wenhua Guo and Valerie Moore; Professor of Chemistry Edward Billups; and Jennifer West, the Isabel C. Cameron Professor of Bioengineering, professor of chemical and biomolecular engineering, and director of the Institute of Biosciences and Bioengineering.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>