Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA size a crucial factor in genetic mutations


Researchers at Stanford University have created a larger-than-normal DNA molecule that is copied almost as efficiently as natural DNA. The findings, reported in the Oct. 25 online edition of the Proceedings of the National Academy of Sciences (PNAS), may reveal new insights into how genetic mutations-tiny mistakes that occur during DNA replication-arise. The discovery was made in the laboratory of Eric Kool, a professor of chemistry at Stanford and co-author of the PNAS study.

DNA, the genetic encoder of life, comes in two parallel strands that form a double helix. It’s like a long, twisted ladder where each rung consists of two molecules that form a base pair. DNA has four bases: adenosine (A), thymine (T), guanine (G) and cytosine (C). A always pairs with T, and G with C. To copy itself, the DNA molecule unwinds and splits. Either strand is now a template to build a new DNA molecule. An enzyme-a protein that speeds the reaction, in this case the bacteria E. coli’s DNA polymerase I-moves along the template and selects the corresponding base to create a new base pair.

DNA bases fit into a specialized site on the enzyme before they are bonded to the template. Kool wanted to see how the enzyme reacts if the bases are not the usual size. ’’The idea was to see how DNA replication depends on size,’’ Kool says.

The researchers investigated it by offering bases of different sizes to the DNA polymerase I enzyme and measuring how accurately the enzyme made new DNA copies. About once every 10,000 to 100,000 times the enzyme will put in the wrong base, choosing for instance a G instead of a T to pair with an A. The rate that the enzyme accurately copies DNA is known as its efficiency.

These rare and random mistakes can cause genetic mutations. While we tend to heap negative connotations onto the term, some mutations create new traits that actually benefit the organism or yield no effect. These small-scale changes, collectively called genetic drift, play an important role in evolution, as does natural selection.

To make their DNA bases, Kool started with a molecule similar to thymine-called an analog-and made five different sizes by adding increasingly larger atoms. The first analog was smaller than natural thymine, the second about the same size and the last three were increasingly larger. The difference between the smallest and largest analogs was only one angstrom, or a tenth of a nanometer.

Bigger is better

When the researchers offered the analog bases to DNA polymerase I, the enzyme not only recognized the synthetic molecules as it would natural DNA but also copied one of the slightly larger analogs at a rate 22 times more efficiently than the natural-sized analog. In fact, DNA polymerase I incorporated the slightly larger analog almost as efficiently as it did natural thymine, both in the test tube and in live E. coli bacteria. In contrast to this, the smallest and largest analogs in the set were rejected by the enzyme and the bacteria.

According to Kool, these results indicate that size is a strong factor determining enzyme efficiency-and a mechanism for allowing mutations into the DNA molecule.

’’It’s a way the organism can evolve,’’ Kool says. ’’If the protein that copies DNA prefers a molecule that’s slightly bigger than natural DNA, then it can accept mistakes more readily.’’ For example, although T is supposed to match up with A, it might be inclined to pair with G, which has a slightly larger configuration.

The sheer fact that a living system readily used a base-or nucleotide-that was artificially created is itself groundbreaking. ’’Here we have, I think, the first example of an efficient, human-designed nucleotide working in a live cell,’’ he says.

Kool and the gang are now exploring ’’the funny finding that the bugs prefer DNA that’s larger than natural DNA’’ by making larger nucleotides. ’’Size and shape are related issues, so we’re interested now in keeping the size constant and changing the shape,’’ Kool adds.

Mark Shwartz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>