Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA size a crucial factor in genetic mutations

26.10.2005


Researchers at Stanford University have created a larger-than-normal DNA molecule that is copied almost as efficiently as natural DNA. The findings, reported in the Oct. 25 online edition of the Proceedings of the National Academy of Sciences (PNAS), may reveal new insights into how genetic mutations-tiny mistakes that occur during DNA replication-arise. The discovery was made in the laboratory of Eric Kool, a professor of chemistry at Stanford and co-author of the PNAS study.



DNA, the genetic encoder of life, comes in two parallel strands that form a double helix. It’s like a long, twisted ladder where each rung consists of two molecules that form a base pair. DNA has four bases: adenosine (A), thymine (T), guanine (G) and cytosine (C). A always pairs with T, and G with C. To copy itself, the DNA molecule unwinds and splits. Either strand is now a template to build a new DNA molecule. An enzyme-a protein that speeds the reaction, in this case the bacteria E. coli’s DNA polymerase I-moves along the template and selects the corresponding base to create a new base pair.

DNA bases fit into a specialized site on the enzyme before they are bonded to the template. Kool wanted to see how the enzyme reacts if the bases are not the usual size. ’’The idea was to see how DNA replication depends on size,’’ Kool says.


The researchers investigated it by offering bases of different sizes to the DNA polymerase I enzyme and measuring how accurately the enzyme made new DNA copies. About once every 10,000 to 100,000 times the enzyme will put in the wrong base, choosing for instance a G instead of a T to pair with an A. The rate that the enzyme accurately copies DNA is known as its efficiency.

These rare and random mistakes can cause genetic mutations. While we tend to heap negative connotations onto the term, some mutations create new traits that actually benefit the organism or yield no effect. These small-scale changes, collectively called genetic drift, play an important role in evolution, as does natural selection.

To make their DNA bases, Kool started with a molecule similar to thymine-called an analog-and made five different sizes by adding increasingly larger atoms. The first analog was smaller than natural thymine, the second about the same size and the last three were increasingly larger. The difference between the smallest and largest analogs was only one angstrom, or a tenth of a nanometer.

Bigger is better

When the researchers offered the analog bases to DNA polymerase I, the enzyme not only recognized the synthetic molecules as it would natural DNA but also copied one of the slightly larger analogs at a rate 22 times more efficiently than the natural-sized analog. In fact, DNA polymerase I incorporated the slightly larger analog almost as efficiently as it did natural thymine, both in the test tube and in live E. coli bacteria. In contrast to this, the smallest and largest analogs in the set were rejected by the enzyme and the bacteria.

According to Kool, these results indicate that size is a strong factor determining enzyme efficiency-and a mechanism for allowing mutations into the DNA molecule.

’’It’s a way the organism can evolve,’’ Kool says. ’’If the protein that copies DNA prefers a molecule that’s slightly bigger than natural DNA, then it can accept mistakes more readily.’’ For example, although T is supposed to match up with A, it might be inclined to pair with G, which has a slightly larger configuration.

The sheer fact that a living system readily used a base-or nucleotide-that was artificially created is itself groundbreaking. ’’Here we have, I think, the first example of an efficient, human-designed nucleotide working in a live cell,’’ he says.

Kool and the gang are now exploring ’’the funny finding that the bugs prefer DNA that’s larger than natural DNA’’ by making larger nucleotides. ’’Size and shape are related issues, so we’re interested now in keeping the size constant and changing the shape,’’ Kool adds.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>