Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Color Perception Is Not in the Eye of the Beholder: It’s in the Brain

26.10.2005


First-ever images of living human retinas have yielded a surprise about how we perceive our world. Researchers at the University of Rochester have found that the number of color-sensitive cones in the human retina differs dramatically among people—by up to 40 times—yet people appear to perceive colors the same way. The findings, on the cover of this week’s journal Neuroscience, strongly suggest that our perception of color is controlled much more by our brains than by our eyes.


Images of living human retinas showing the wide diversity of number of cones sensitive to different colors. (Photo credit: University of Rochester)



"We were able to precisely image and count the color-receptive cones in a living human eye for the first time, and we were astonished at the results," says David Williams, Allyn Professor of Medical Optics and director of the Center for Visual Science. "We’ve shown that color perception goes far beyond the hardware of the eye, and that leads to a lot of interesting questions about how and why we perceive color."

Williams and his research team, led by postdoctoral student Heidi Hofer, now an assistant professor at the University of Houston, used a laser-based system developed by Williams that maps out the topography of the inner eye in exquisite detail. The technology, known as adaptive optics, was originally used by astronomers in telescopes to compensate for the blurring of starlight caused by the atmosphere.


Williams turned the technique from the heavens back toward the eye to compensate for common aberrations. The technique allows researchers to study the living retina in ways that were never before possible. The pigment that allows each cone in the human eye to react to different colors is very fragile and normal microscope light bleaches it away. This means that looking at the retina from a cadaver yields almost no information on the arrangement of their cones, and there is certainly no ability to test for color perception. Likewise, the amino acids that make up two of the three different-colored cones are so similar that there are no stains that can bind to some and not others, a process often used by researchers to differentiate cell types under a microscope.

Imaging the living retina allowed Williams to shine light directly into the eye to see what wavelengths each cone reflects and absorbs, and thus to which color each is responsive. In addition, the technique allows scientists to image more than a thousand cones at once, giving an unprecedented look at the composition and distribution of color cones in the eyes of living humans with varied retinal structure.

Each subject was asked to tune the color of a disk of light to produce a pure yellow light that was neither reddish yellow nor greenish yellow. Everyone selected nearly the same wavelength of yellow, showing an obvious consensus over what color they perceived yellow to be. Once Williams looked into their eyes, however, he was surprised to see that the number of long- and middle-wavelength cones—the cones that detect red, green, and yellow—were sometimes profusely scattered throughout the retina, and sometimes barely evident. The discrepancy was more than a 40:1 ratio, yet all the volunteers were apparently seeing the same color yellow.

"Those early experiments showed that everyone we tested has the same color experience despite this really profound difference in the front-end of their visual system," says Hofer. "That points to some kind of normalization or auto-calibration mechanism—some kind of circuit in the brain that balances the colors for you no matter what the hardware is."

In a related experiment, Williams and a postdoctoral fellow Yasuki Yamauchi, working with other collaborators from the Medical College of Wisconsin, gave several people colored contacts to wear for four hours a day. While wearing the contacts, people tended to eventually feel as if they were not wearing the contacts, just as people who wear colored sunglasses tend to see colors "correctly" after a few minutes with the sunglasses. The volunteers’ normal color vision, however, began to shift after several weeks of contact use. Even when not wearing the contacts, they all began to select a pure yellow that was a different wavelength than they had before wearing the contacts.

"Over time, we were able to shift their natural perception of yellow in one direction, and then the other," says Williams. "This is direct evidence for an internal, automatic calibrator of color perception. These experiments show that color is defined by our experience in the world, and since we all share the same world, we arrive at the same definition of colors."

Williams’ team is now looking to identify the genetic basis for this large variation between retinas. Early tests on the original volunteers showed no simple connection among certain genes and the number and diversity of color cones, but Williams is continuing to search for the responsible combination of genes.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>