Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Researchers Redesign Life for Mars and Beyond

26.10.2005


Researchers at North Carolina State University are looking deep under water for clues on how to redesign plants for life deep in outer space.

Some of the stresses inherent with travel and life in space – extreme temperatures, drought, radiation and gravity, for example – are not easily remedied with traditional plant defenses.

So Dr. Wendy Boss, William Neal Reynolds Distinguished Professor of Botany, and Dr. Amy Grunden, assistant professor of microbiology, have combined their expertise to transfer beneficial characteristics from a sea-dwelling, single-celled organism called Pyrococcus furiosus into model plants like tobacco and Arabidopsis, or mustard weed.

P. furiosus is one of Earth’s earliest life forms, a microbe that can survive in extreme temperatures. It grows and dwells in underwater sea volcanoes where temperatures reach more than 100 degrees Celsius, or that of boiling water. Occasionally, the organism is spewed out into near freezing deep-sea water.

The NC State research, funded for two years and $400,000 by the NASA Institute for Advanced Concepts, entails extracting a gene – called superoxide reductase – from P. furiosus and expressing it in plants. That gene, one of nature’s best antioxidants, reduces superoxide, which in plants is a chemical signal given off when stressful conditions are encountered. This signal essentially puts the plant on alert, but staying on alert too long can be harmful: If not reduced quickly, the toxic superoxide will kill plant cells.

Since the superoxide reductase gene is not found in plants, Boss, an expert in plant metabolism and plant responses to stimuli, and Grunden, an expert in organisms that grow in extreme environments, wanted to use this genetic manipulation as a test run to gauge the feasibility of inserting a gene from an extremophile – an organism that survives, and thrives, in extreme environments – into a plant, and then seeing whether the gene would function the way it does in its original organism.

“The bottom line is that we were able to produce the P. furiosus superoxide reductase gene in a model plant cell line and to show that the enzyme has the same function and properties of the native P. furiosus enzyme,” Boss said. “The fact that the plant cells would produce a protein with all the properties of the P. furiosus protein opens new avenues for research in designing plants to survive and thrive in extreme conditions.”

But people living on the Arctic Circle shouldn’t be rushing out to buy palm trees just yet. It’ll take years and much more study before plants will be able to survive outside of their usual habitats. Moreover, there could be deleterious side effects to this type of genetic manipulation. What’s important, the researchers say, is the fact that P. furiosus and other extremophiles might be able to lend their beneficial traits to plants sometime in the future.

“This is very fundamental research,” Boss said. “If we could add new genes to plants, we could potentially make the plants more resistant to extreme conditions such as drought and extreme temperatures that we have on Earth, but also to the extreme conditions that one might find on Mars.”

Now that the concept of inserting a single gene from an extremophile into a plant has been proven, the researchers are working to insert associated genes in hopes of providing even more extreme-temperature protection to plants. And, they’re involving more great minds to come up with more answers – they’ve team-taught an honors undergraduate class called “Redesigning Living Organisms to Survive on Mars: Development of Virtual Plants” and plan to offer another class to investigate new mechanisms for reducing radiation damage in spring 2007.

Mick Kulikowski | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>