Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Researchers Redesign Life for Mars and Beyond

26.10.2005


Researchers at North Carolina State University are looking deep under water for clues on how to redesign plants for life deep in outer space.

Some of the stresses inherent with travel and life in space – extreme temperatures, drought, radiation and gravity, for example – are not easily remedied with traditional plant defenses.

So Dr. Wendy Boss, William Neal Reynolds Distinguished Professor of Botany, and Dr. Amy Grunden, assistant professor of microbiology, have combined their expertise to transfer beneficial characteristics from a sea-dwelling, single-celled organism called Pyrococcus furiosus into model plants like tobacco and Arabidopsis, or mustard weed.

P. furiosus is one of Earth’s earliest life forms, a microbe that can survive in extreme temperatures. It grows and dwells in underwater sea volcanoes where temperatures reach more than 100 degrees Celsius, or that of boiling water. Occasionally, the organism is spewed out into near freezing deep-sea water.

The NC State research, funded for two years and $400,000 by the NASA Institute for Advanced Concepts, entails extracting a gene – called superoxide reductase – from P. furiosus and expressing it in plants. That gene, one of nature’s best antioxidants, reduces superoxide, which in plants is a chemical signal given off when stressful conditions are encountered. This signal essentially puts the plant on alert, but staying on alert too long can be harmful: If not reduced quickly, the toxic superoxide will kill plant cells.

Since the superoxide reductase gene is not found in plants, Boss, an expert in plant metabolism and plant responses to stimuli, and Grunden, an expert in organisms that grow in extreme environments, wanted to use this genetic manipulation as a test run to gauge the feasibility of inserting a gene from an extremophile – an organism that survives, and thrives, in extreme environments – into a plant, and then seeing whether the gene would function the way it does in its original organism.

“The bottom line is that we were able to produce the P. furiosus superoxide reductase gene in a model plant cell line and to show that the enzyme has the same function and properties of the native P. furiosus enzyme,” Boss said. “The fact that the plant cells would produce a protein with all the properties of the P. furiosus protein opens new avenues for research in designing plants to survive and thrive in extreme conditions.”

But people living on the Arctic Circle shouldn’t be rushing out to buy palm trees just yet. It’ll take years and much more study before plants will be able to survive outside of their usual habitats. Moreover, there could be deleterious side effects to this type of genetic manipulation. What’s important, the researchers say, is the fact that P. furiosus and other extremophiles might be able to lend their beneficial traits to plants sometime in the future.

“This is very fundamental research,” Boss said. “If we could add new genes to plants, we could potentially make the plants more resistant to extreme conditions such as drought and extreme temperatures that we have on Earth, but also to the extreme conditions that one might find on Mars.”

Now that the concept of inserting a single gene from an extremophile into a plant has been proven, the researchers are working to insert associated genes in hopes of providing even more extreme-temperature protection to plants. And, they’re involving more great minds to come up with more answers – they’ve team-taught an honors undergraduate class called “Redesigning Living Organisms to Survive on Mars: Development of Virtual Plants” and plan to offer another class to investigate new mechanisms for reducing radiation damage in spring 2007.

Mick Kulikowski | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>