Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New classification of eukaryotes has implications for AIDS treatment, agriculture and beyond

26.10.2005


This classification conveys important information about the biochemistry and metabolism of disease-causing organisms. Here are three examples. 1) Pneumocystis, an opportunistic pathogen causing mortality in AIDS patients and immunocompromised individuals, is now known to be a fungus, indicating a different treatment regimen is needed. 2) Phytophtora, an organism causing potato blight, such as the one that caused the Irish famine in the 19th century, is now known not to be a fungus, which explains why fungicides are not effective treatments. 3) Plasmodium, the causative agent of malaria, is now known to share ancestry with photosynthetic organisms and has a vestigial chloroplast, called the apicoplast. This knowledge opens exciting possibilities for novel drug therapies.



The new classification recognizes 6 major clusters of organisms, rather than the 4 traditional Kingdoms. These clusters are 1) the Opisthokonta, grouping the animals, fungi, choanoflagellates, and Mesomycetozoa; 2) the Amoebozoa, grouping most traditional amoebae, slime moulds, many testate amoebae, some amoebo-flagellates, and several species without mitochondria; 3) the Excavata, grouping oxymonads, parabasalids, diplomonads, jakobids, and several other genera of heterotrophic flagellates, and possibly including the Euglenozoa and Heterolobosea; 4) the Rhizaria, grouping the Foraminifera, most of the traditional Radiolaria, and the Cercozoa with filose pseudopodia, such as many amoebo-flagellates and some testate amoebae; 5) the Archaeplastida, grouping the Glaucophyta, red algae, green algae, and Plantae; 6) the Chromalveolata, grouping the Alveolata (including ciliates, the dinoflagellates, and the Apicomplexa), cryptophytes, haptophytes, and stramenopiles (including brown algae, the diatoms, many zoosporic fungi, opalinids, amongst others).

Finally, the authors noted that they "adopted a hierarchical system without formal rank designations, such as "class," "sub-class," "super-order" or "order," The decision to do so has been primarily motivated by utility, to avoid the common problem of a single change causing a cascade of changes to the system. We believe this to be more utilitarian, and less problematic than traditional conventions, as it is not constrained by formally attributing a limited number of rank names."

Jill Yablonski | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>