Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New classification of eukaryotes has implications for AIDS treatment, agriculture and beyond

26.10.2005


This classification conveys important information about the biochemistry and metabolism of disease-causing organisms. Here are three examples. 1) Pneumocystis, an opportunistic pathogen causing mortality in AIDS patients and immunocompromised individuals, is now known to be a fungus, indicating a different treatment regimen is needed. 2) Phytophtora, an organism causing potato blight, such as the one that caused the Irish famine in the 19th century, is now known not to be a fungus, which explains why fungicides are not effective treatments. 3) Plasmodium, the causative agent of malaria, is now known to share ancestry with photosynthetic organisms and has a vestigial chloroplast, called the apicoplast. This knowledge opens exciting possibilities for novel drug therapies.



The new classification recognizes 6 major clusters of organisms, rather than the 4 traditional Kingdoms. These clusters are 1) the Opisthokonta, grouping the animals, fungi, choanoflagellates, and Mesomycetozoa; 2) the Amoebozoa, grouping most traditional amoebae, slime moulds, many testate amoebae, some amoebo-flagellates, and several species without mitochondria; 3) the Excavata, grouping oxymonads, parabasalids, diplomonads, jakobids, and several other genera of heterotrophic flagellates, and possibly including the Euglenozoa and Heterolobosea; 4) the Rhizaria, grouping the Foraminifera, most of the traditional Radiolaria, and the Cercozoa with filose pseudopodia, such as many amoebo-flagellates and some testate amoebae; 5) the Archaeplastida, grouping the Glaucophyta, red algae, green algae, and Plantae; 6) the Chromalveolata, grouping the Alveolata (including ciliates, the dinoflagellates, and the Apicomplexa), cryptophytes, haptophytes, and stramenopiles (including brown algae, the diatoms, many zoosporic fungi, opalinids, amongst others).

Finally, the authors noted that they "adopted a hierarchical system without formal rank designations, such as "class," "sub-class," "super-order" or "order," The decision to do so has been primarily motivated by utility, to avoid the common problem of a single change causing a cascade of changes to the system. We believe this to be more utilitarian, and less problematic than traditional conventions, as it is not constrained by formally attributing a limited number of rank names."

Jill Yablonski | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>