Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene therapy reverses genetic mutation responsible for heart failure in muscular dystrophy


Study conducted in hamsters with same genetic defect as human muscular dystrophy shows great promise for treating adult heart failure

University of Pittsburgh investigators have for the first time used gene therapy to successfully treat heart failure and other degenerative muscle problems in an animal model that is genetically susceptible to a human muscular dystrophy. Reporting in the Oct. 25 edition of the journal Circulation, the authors say that this is the first successful attempt to deliver a therapeutic gene throughout the body.

"Previous attempts at systemic gene therapy for muscle have not been very effective because blood vessel capillaries act much like a mosquito net, blocking the gene drugs from reaching the muscle cells. Fortunately, we found a virus that is just small and sneaky enough to get through this net and deliver the therapeutic gene to both skeletal and cardiac muscle cells," said lead author, Xiao Xiao, Ph.D., associate professor of orthopaedic surgery at the University of Pittsburgh School of Medicine.

The virus used by Dr. Xiao and his colleagues for delivering the corrective gene is known as adeno-associated virus, or AAV, a class of relatively small viruses that do not cause any known disease. In earlier studies, Dr. Xiao’s team found that direct intramuscular injection of AAV was effective in transferring a gene into muscle cells in a fairly wide area around the injection site. However, for gene therapy treatments to be successful, particularly for muscular dystrophies where many organs and tissues are affected throughout the body, intramuscular injection is not practical for delivering a corrective gene to the body’s more than 600 muscle groups.

Recently, Dr. Xiao’s team demonstrated that a type of AAV, known as AAV-8, is particularly efficient at penetrating the capillary barrier, making it a good candidate for whole-body gene delivery. In this study, they tested AAV-8 in an animal model of human muscular dystrophy called limb girdle muscular dystrophy, or LGMD. In human LGMD, defects in a muscle cell membrane protein known as delta-sarcoglycan lead to severe damage and weakness to muscles, particularly around the hips and shoulders--hence the name "limb girdle"-- as well as in the heart. Like humans, hamsters with this particular delta-sarcoglycan gene defect have severe muscle wasting and weakness and significantly shortened lifespans due to cardiac and respiratory failure.

After injecting a very high dose of AAV-8 carrying a normal copy of the delta-sarcoglycan gene intravenously into 10-day-old and adult LGMD hamsters, Dr. Xiao and his colleagues found that it had been systemically incorporated into skeletal, diaphragm and cardiac muscle cells in both groups. More importantly, cardiac and lung muscle cells in both newborn- and adult-treated hamsters were able to express the normal protein almost a year later. There were dramatic biochemical and structural improvements in muscle cells in both groups as well.

This was accompanied by markedly improved skeletal and cardiac muscle functions. Indeed, the newborn-treated hamsters had completely normal hearts, when examined at eight and one-half months after gene therapy. The adult hamsters also showed significant improvements in heart muscle structure. In contrast, untreated hamsters had severe structural and tissue abnormalities of the heart in addition to secondary symptoms of heart failure such as liver problems, swollen lungs and a severe buildup of fluid in the chest and peritoneal cavities.

Perhaps even more impressive was the improvement in endurance and lifespan of the treated versus the untreated hamsters. The AAV-8-treated hamsters were able to run the same distance as normal hamsters before tiring and for much longer than untreated LGMD hamsters. Furthermore, all of the untreated LGMD animals died of heart failure or other complications of muscular dystrophy around 37 weeks, while all of the AAV-8-treated LGMD hamsters survived beyond the 48-week duration of the study.

"When we began the experiment, we anticipated that the treatment would be effective. However, we never imagined it would be so effective, particularly in protecting against or reversing the damage to the heart caused by this mutation and extending lifespan," explained Dr. Tong Zhu, M.D., Ph.D., a research associate in the department of orthopaedic surgery and the first author of the study. "In fact, if this study holds up in human clinical trials, it may have profound implications for the treatment of heart failure."

Dr. Xiao cautioned, however, that human clinical trials of this therapy face several major challenges. Foremost is that effective treatment requires the injection of a large amount of the virus so there is enough to reach every muscle cell. Because 30 percent to 40 percent of the population has antibodies to human AAVs, there is always the possibility that the effectiveness of this form of gene therapy may be blunted by a host immune response. However, Dr. Xiao is optimistic that will not be the case.

"The AAV-8 we used in this study was isolated from monkeys, so we are very hopeful it will be able to deliver the genes before the human immune system produces antibodies to block it. In addition, we used a muscle-specific promoter in the virus, which also should lower the risk of any potential immune response against the gene product. In fact, in hamsters, we did not find any immune response to the human delta-sarcoglycan protein that was encoded by the AAV vector under the control of this promoter," he explained.

In addition to Drs. Xiao and Zhu, other authors of this study are: Liqiao Zhou, V.M.D.; Zhong Wang, M.D., Ph.D.; Chunping Qiao, M.D., Ph.D.; Chunlian Chen, M.D.; and Juan Li, M.D., Molecular Therapy Laboratory, department of orthopaedic surgery, and Satsuki Mori, M.D., and Charles McTiernan, Ph.D., Cardiovascular Institute, all from the University of Pittsburgh School of Medicine; and Daowen Wang, M.D., Ph.D., department of cardiology, Tongi Hospital, Huazhong Science & Technology University, Wuhan, China.

Jim Swyers | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>