Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reverses genetic mutation responsible for heart failure in muscular dystrophy

26.10.2005


Study conducted in hamsters with same genetic defect as human muscular dystrophy shows great promise for treating adult heart failure



University of Pittsburgh investigators have for the first time used gene therapy to successfully treat heart failure and other degenerative muscle problems in an animal model that is genetically susceptible to a human muscular dystrophy. Reporting in the Oct. 25 edition of the journal Circulation, the authors say that this is the first successful attempt to deliver a therapeutic gene throughout the body.

"Previous attempts at systemic gene therapy for muscle have not been very effective because blood vessel capillaries act much like a mosquito net, blocking the gene drugs from reaching the muscle cells. Fortunately, we found a virus that is just small and sneaky enough to get through this net and deliver the therapeutic gene to both skeletal and cardiac muscle cells," said lead author, Xiao Xiao, Ph.D., associate professor of orthopaedic surgery at the University of Pittsburgh School of Medicine.


The virus used by Dr. Xiao and his colleagues for delivering the corrective gene is known as adeno-associated virus, or AAV, a class of relatively small viruses that do not cause any known disease. In earlier studies, Dr. Xiao’s team found that direct intramuscular injection of AAV was effective in transferring a gene into muscle cells in a fairly wide area around the injection site. However, for gene therapy treatments to be successful, particularly for muscular dystrophies where many organs and tissues are affected throughout the body, intramuscular injection is not practical for delivering a corrective gene to the body’s more than 600 muscle groups.

Recently, Dr. Xiao’s team demonstrated that a type of AAV, known as AAV-8, is particularly efficient at penetrating the capillary barrier, making it a good candidate for whole-body gene delivery. In this study, they tested AAV-8 in an animal model of human muscular dystrophy called limb girdle muscular dystrophy, or LGMD. In human LGMD, defects in a muscle cell membrane protein known as delta-sarcoglycan lead to severe damage and weakness to muscles, particularly around the hips and shoulders--hence the name "limb girdle"-- as well as in the heart. Like humans, hamsters with this particular delta-sarcoglycan gene defect have severe muscle wasting and weakness and significantly shortened lifespans due to cardiac and respiratory failure.

After injecting a very high dose of AAV-8 carrying a normal copy of the delta-sarcoglycan gene intravenously into 10-day-old and adult LGMD hamsters, Dr. Xiao and his colleagues found that it had been systemically incorporated into skeletal, diaphragm and cardiac muscle cells in both groups. More importantly, cardiac and lung muscle cells in both newborn- and adult-treated hamsters were able to express the normal protein almost a year later. There were dramatic biochemical and structural improvements in muscle cells in both groups as well.

This was accompanied by markedly improved skeletal and cardiac muscle functions. Indeed, the newborn-treated hamsters had completely normal hearts, when examined at eight and one-half months after gene therapy. The adult hamsters also showed significant improvements in heart muscle structure. In contrast, untreated hamsters had severe structural and tissue abnormalities of the heart in addition to secondary symptoms of heart failure such as liver problems, swollen lungs and a severe buildup of fluid in the chest and peritoneal cavities.

Perhaps even more impressive was the improvement in endurance and lifespan of the treated versus the untreated hamsters. The AAV-8-treated hamsters were able to run the same distance as normal hamsters before tiring and for much longer than untreated LGMD hamsters. Furthermore, all of the untreated LGMD animals died of heart failure or other complications of muscular dystrophy around 37 weeks, while all of the AAV-8-treated LGMD hamsters survived beyond the 48-week duration of the study.

"When we began the experiment, we anticipated that the treatment would be effective. However, we never imagined it would be so effective, particularly in protecting against or reversing the damage to the heart caused by this mutation and extending lifespan," explained Dr. Tong Zhu, M.D., Ph.D., a research associate in the department of orthopaedic surgery and the first author of the study. "In fact, if this study holds up in human clinical trials, it may have profound implications for the treatment of heart failure."

Dr. Xiao cautioned, however, that human clinical trials of this therapy face several major challenges. Foremost is that effective treatment requires the injection of a large amount of the virus so there is enough to reach every muscle cell. Because 30 percent to 40 percent of the population has antibodies to human AAVs, there is always the possibility that the effectiveness of this form of gene therapy may be blunted by a host immune response. However, Dr. Xiao is optimistic that will not be the case.

"The AAV-8 we used in this study was isolated from monkeys, so we are very hopeful it will be able to deliver the genes before the human immune system produces antibodies to block it. In addition, we used a muscle-specific promoter in the virus, which also should lower the risk of any potential immune response against the gene product. In fact, in hamsters, we did not find any immune response to the human delta-sarcoglycan protein that was encoded by the AAV vector under the control of this promoter," he explained.

In addition to Drs. Xiao and Zhu, other authors of this study are: Liqiao Zhou, V.M.D.; Zhong Wang, M.D., Ph.D.; Chunping Qiao, M.D., Ph.D.; Chunlian Chen, M.D.; and Juan Li, M.D., Molecular Therapy Laboratory, department of orthopaedic surgery, and Satsuki Mori, M.D., and Charles McTiernan, Ph.D., Cardiovascular Institute, all from the University of Pittsburgh School of Medicine; and Daowen Wang, M.D., Ph.D., department of cardiology, Tongi Hospital, Huazhong Science & Technology University, Wuhan, China.

Jim Swyers | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>