Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipids play important role in nervous system development

26.10.2005


Blocking a signaling lipid can keep nerves from developing the arm-like extensions they need to wire the body and may even cause neurons to die, researchers have found.



The researchers hope this piece of the puzzle of how the central nervous system develops in the first place will one day help them repair loss from injury or disease.

It’s already helped them understand the ailments of a spontaneous mouse mutant that has about 20 percent function of the protein that helps the lipid get to the cell surface so it can help axons grow, says Dr. Wen-Cheng Xiong, developmental neurobiologist and corresponding author on the study published in the November issue of Nature Cell Biology.


The mutant mouse is small and has motor neuron degeneration, with tremors, short limbs and a short life, she says. Before this new work, what the blocked lipid transfer protein regulated was still a mystery.

The lipids in question aren’t those measured during an annual physical exam, rather those that help give shape and function to units within cells such as the nucleus and cell powerhouse, or mitochondria, she says.

“Traditionally people didn’t think these lipids were regulated. They thought they were just there,” says Dr. Xiong. “But what we found is this particular lipid is regulated; it’s like a signaling molecule. Especially during axon growth, the dynamic regulation is more dramatic.”

She and her colleagues found the lipid is transferred to the cell surface at just the right time and place by phosphatidylinositol transfer protein-a, which humans also have. It’s been known that many proteins can be regulated, especially signaling proteins that enable intracellular chatter. “Now we have found this protein regulates lipids and lipids also travel,” Dr. Xiong says.

The mouse mutant is a clear example of what can happen when the lipids don’t travel. The researchers also studied a similar mutant chick embryo that had reduced axon growth. For this paper, they added the zebrafish embryo, which forms most of its major organs within the first 24 hours and remains transparent for the first few days of life, to further document the role of these regulated lipids and their transfer protein.

When they injected an agent that blocks expression of a related lipid transport protein, the next they could see the impact on axon growth and neuron survival, says Dr. David J. Kozlowski, developmental geneticist and director of the MCG Transgenic Zebrafish Core Laboratory. They looked at different levels of suppression, finding the greater the suppression, the greater the resulting defect. “It shows this protein is critical for development,” Dr. Xiong says of repeated findings.

Next they’ll use a version of the transgenic zebrafish that will enable them to watch axon development – or lack of it – in live embryos and in real time, Dr. Kozlowski says.

They also want to look at what happens to the lipid activity in an injury model. They already know some signaling proteins are disturbed.

MCG contributors included the laboratories of Drs. Xiong and Kozlowski as well as Dr. Lin Mei, program chief in Developmental Neurobiology and Georgia Research Alliance Eminent Scholar in Neuroscience.

Collaborating institutions include the University of Alabama at Birmingham; the Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Howard Hughes Medical Institute; and the Jackson Laboratory in Bar Harbor, Maine.

The work was supported by the National Institutes of Health.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>