Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipids play important role in nervous system development

26.10.2005


Blocking a signaling lipid can keep nerves from developing the arm-like extensions they need to wire the body and may even cause neurons to die, researchers have found.



The researchers hope this piece of the puzzle of how the central nervous system develops in the first place will one day help them repair loss from injury or disease.

It’s already helped them understand the ailments of a spontaneous mouse mutant that has about 20 percent function of the protein that helps the lipid get to the cell surface so it can help axons grow, says Dr. Wen-Cheng Xiong, developmental neurobiologist and corresponding author on the study published in the November issue of Nature Cell Biology.


The mutant mouse is small and has motor neuron degeneration, with tremors, short limbs and a short life, she says. Before this new work, what the blocked lipid transfer protein regulated was still a mystery.

The lipids in question aren’t those measured during an annual physical exam, rather those that help give shape and function to units within cells such as the nucleus and cell powerhouse, or mitochondria, she says.

“Traditionally people didn’t think these lipids were regulated. They thought they were just there,” says Dr. Xiong. “But what we found is this particular lipid is regulated; it’s like a signaling molecule. Especially during axon growth, the dynamic regulation is more dramatic.”

She and her colleagues found the lipid is transferred to the cell surface at just the right time and place by phosphatidylinositol transfer protein-a, which humans also have. It’s been known that many proteins can be regulated, especially signaling proteins that enable intracellular chatter. “Now we have found this protein regulates lipids and lipids also travel,” Dr. Xiong says.

The mouse mutant is a clear example of what can happen when the lipids don’t travel. The researchers also studied a similar mutant chick embryo that had reduced axon growth. For this paper, they added the zebrafish embryo, which forms most of its major organs within the first 24 hours and remains transparent for the first few days of life, to further document the role of these regulated lipids and their transfer protein.

When they injected an agent that blocks expression of a related lipid transport protein, the next they could see the impact on axon growth and neuron survival, says Dr. David J. Kozlowski, developmental geneticist and director of the MCG Transgenic Zebrafish Core Laboratory. They looked at different levels of suppression, finding the greater the suppression, the greater the resulting defect. “It shows this protein is critical for development,” Dr. Xiong says of repeated findings.

Next they’ll use a version of the transgenic zebrafish that will enable them to watch axon development – or lack of it – in live embryos and in real time, Dr. Kozlowski says.

They also want to look at what happens to the lipid activity in an injury model. They already know some signaling proteins are disturbed.

MCG contributors included the laboratories of Drs. Xiong and Kozlowski as well as Dr. Lin Mei, program chief in Developmental Neurobiology and Georgia Research Alliance Eminent Scholar in Neuroscience.

Collaborating institutions include the University of Alabama at Birmingham; the Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Howard Hughes Medical Institute; and the Jackson Laboratory in Bar Harbor, Maine.

The work was supported by the National Institutes of Health.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>