Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipids play important role in nervous system development

26.10.2005


Blocking a signaling lipid can keep nerves from developing the arm-like extensions they need to wire the body and may even cause neurons to die, researchers have found.



The researchers hope this piece of the puzzle of how the central nervous system develops in the first place will one day help them repair loss from injury or disease.

It’s already helped them understand the ailments of a spontaneous mouse mutant that has about 20 percent function of the protein that helps the lipid get to the cell surface so it can help axons grow, says Dr. Wen-Cheng Xiong, developmental neurobiologist and corresponding author on the study published in the November issue of Nature Cell Biology.


The mutant mouse is small and has motor neuron degeneration, with tremors, short limbs and a short life, she says. Before this new work, what the blocked lipid transfer protein regulated was still a mystery.

The lipids in question aren’t those measured during an annual physical exam, rather those that help give shape and function to units within cells such as the nucleus and cell powerhouse, or mitochondria, she says.

“Traditionally people didn’t think these lipids were regulated. They thought they were just there,” says Dr. Xiong. “But what we found is this particular lipid is regulated; it’s like a signaling molecule. Especially during axon growth, the dynamic regulation is more dramatic.”

She and her colleagues found the lipid is transferred to the cell surface at just the right time and place by phosphatidylinositol transfer protein-a, which humans also have. It’s been known that many proteins can be regulated, especially signaling proteins that enable intracellular chatter. “Now we have found this protein regulates lipids and lipids also travel,” Dr. Xiong says.

The mouse mutant is a clear example of what can happen when the lipids don’t travel. The researchers also studied a similar mutant chick embryo that had reduced axon growth. For this paper, they added the zebrafish embryo, which forms most of its major organs within the first 24 hours and remains transparent for the first few days of life, to further document the role of these regulated lipids and their transfer protein.

When they injected an agent that blocks expression of a related lipid transport protein, the next they could see the impact on axon growth and neuron survival, says Dr. David J. Kozlowski, developmental geneticist and director of the MCG Transgenic Zebrafish Core Laboratory. They looked at different levels of suppression, finding the greater the suppression, the greater the resulting defect. “It shows this protein is critical for development,” Dr. Xiong says of repeated findings.

Next they’ll use a version of the transgenic zebrafish that will enable them to watch axon development – or lack of it – in live embryos and in real time, Dr. Kozlowski says.

They also want to look at what happens to the lipid activity in an injury model. They already know some signaling proteins are disturbed.

MCG contributors included the laboratories of Drs. Xiong and Kozlowski as well as Dr. Lin Mei, program chief in Developmental Neurobiology and Georgia Research Alliance Eminent Scholar in Neuroscience.

Collaborating institutions include the University of Alabama at Birmingham; the Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Howard Hughes Medical Institute; and the Jackson Laboratory in Bar Harbor, Maine.

The work was supported by the National Institutes of Health.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>