Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers learn how blood vessel cells cope with their pressure-packed job

25.10.2005


UCSD scientists have gained a better understanding of how repetitive stretching of endothelial cells that line arteries can make them healthy and resistant to vascular diseases.


Top: When aortic endothelial cells were stretched in the up-and-down orientation shown here, they grew "stress fibers" (red) in a "healty" alignment perpendicular to the axis of stretch. Bottom: When researchers inhibited a protein called Rho in aortic endothelial cells, stress fibers grew in an "unhealthy" direction parallel to the axis of stretch.


Each of these bovine aorta endothelial cells were stretched along an axis that runs up and down in these photographs. An unstretched cell, top, produced "stress fiber" filaments in random directions, but as the stretching increased from 3 percent of a cell length, middle, to 10 percent of a cell length, stress fibers were increasingly likely to be aligned perpendiculat to the stretching force.



UCSD researchers stretched cells in a workout chamber the size of a credit card to gain a better understanding of how repetitive stretching of endothelial cells that line arteries can make them healthy and resistant to vascular diseases.

Bioengineering researchers at UCSD’s Jacobs School of Engineering will report in the Nov. 1 issue of Proceedings of the National Academy of Sciences (PNAS) that arterial endothelial cells subjected to repeated stretching (10 percent of their length, 60 times per minute) produced intracellular arrays of parallel "stress fibers" in a few hours.


The tests were performed on endothelial cells lining the aorta of a cow, but the endothelial cells of the human aorta are expected to react similarly. The stress fibers were made of actin, a fibrous protein that is part of the machinery that gives muscle its ability to contract. Actin also gives virtually all cells their ability to make an internal "cytoskeleton." The stress fibers of endothelial cells in arteries are aligned parallel to the long axis of blood vessels, and this alignment is perpendicular to the direction of rhythmic stretching caused by a beating heart. Such an orientation of stress fibers is a hallmark of healthy blood vessels, but scientists currently understand few of the factors responsible for generating that configuration.

Rubber bands and most other flexible materials react to stretching by forming stress wrinkles parallel to the direction in which they are being pulled. However, the healthy bovine aorta endothelial cells did not behave that way in tests performed in the laboratory of Shu Chien, a coauthor of the PNAS paper and a professor of bioengineering and medicine and director of the Whitaker Institute of Biomedical Engineering at UCSD. When Chien and his collaborators stretched the cells back and forth along one axis in the miniature workout chambers, the cells formed stress fibers perpendicular to the direction of stretch. "This orientation of actin fibers can be thought of as a feedback control in which the external stresses imposed on the cell are felt internally to a much reduced degree," said Chien.

Post-doctoral fellow Roland Kaunas, now an assistant professor of biomedical engineering at Texas A&M University, with the help of UCSD laboratory assistant Phu Nguyen, found that unstretched cells or cells that were stretched only 1 percent of their length contained actin fibers with no directional orientation. However, as they increased the rhythmic stretching from 3 percent of a cell’s length to 10 percent, stretch fibers became increasingly oriented perpendicular to the stretching direction.

In the most significant finding in the PNAS article, which was made available online Oct. 24, Chien’s group reported that when an intracellular protein called Rho was chemically inhibited, stress fibers grew in the "wrong" direction; they grew parallel rather than perpendicular to the direction of cell stretching. Without Rho, the cells lost their ability to orient stress fibers properly. "Rho is a very important molecule," said Chien. "It works in response to, and in concert with, physical stretching to generate the healthy alignment of stress fibers." Indeed, when Chien’s group used a genetic technique to increase the activity of Rho, those cells grew stress fibers in the healthy direction at a lower threshold of stretching.

"Until now, it has not been shown that there is an equivalence and cooperation between mechanical and biochemical stimuli to regulate the proper orientation of these stress fibers," said Kaunas. "Indeed, we found that the stress fibers oriented in such a way to control their level of stress – not too little and not too much."

Chien and Kaunas collaborated with UCSD research scientist Shunichi Usami, who contributed to the design of the miniature workout chambers. Silicone rubber membranes inside the chambers were coated with a protein that allowed the endothelial cells to adhere to the membranes in a manner similar to how they attach to underlying blood vessel tissue in the body. The researchers isolated endothelial cells from the bovine aorta, grew the cells in culture flasks, and seeded them onto the silicone membranes. After the cells grew into confluent layers, a piston-like "indenter" was programmed to repeatedly push into the underside of the membranes and retract. The 60-cycle-per-minute motion of the indenter simulated the stretching movements of a blood vessel in response to the rising-and-falling blood pressure produced by a beating heart.

The researchers also demonstrated that inhibition of either Rho or a related protein called Rho kinase resulted in loss of the healthy alignment of stress fibers as well as alignment of adhesion sites where those stress fibers would attach to the cell membrane. These new results clearly show that Rho and physical stresses cooperate to produce healthy alignments of stress fibers," said Chien. "We need to understand how cells can sense the mechanical force and achieve this beneficial effect through the activation of Rho, and we also need to identify other proteins that may be involved in this feedback control mechanism."

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>