Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover secret behind human red blood cell’s amazing flexibility

25.10.2005


A human red blood cell is a dimpled ballerina, ceaselessly spinning, tumbling, bending, and squeezing through openings narrower than its width to dispense life-giving oxygen to every corner of the body. In a paper published in the October issue of Annals of Biomedical Engineering, which was made available online on Oct. 21, a team of UCSD researchers describe a mathematical model that explains how a mesh-like protein skeleton gives a healthy human red blood cell both its rubbery ability to stretch without breaking, and a potential mechanism to facilitate diffusion of oxygen across its membrane.



“Red cells are one of the few kinds of cells in the body with no nucleus and only a thin layer of protein skeleton under their membrane: they are living bags of hemoglobin,” said Amy Sung, a professor of bioengineering at UCSD’s Jacobs School of Engineering and coauthor of the study. “Very little is known about how the elements of the membrane skeleton behave when red blood cells deform, and we were amazed at what our simulation revealed.” Scientists have been mystified for years by the human red blood cell membrane skeleton, a network of roughly 33,000 protein hexagons that looks like a microscopic geodesic dome. Unfortunately, neither the architecture of the dome nor the structures of individual proteins that make up the hexagons reveal the details of how the remarkably regular organization actually works.

Sung and her collaborators at the Jacobs School of Engineering focused on what they view is a key component at the center of each hexagon, a rod-shaped protein complex called the proto-filament. The proto-filament is 37 nanometers in length and made of a protein called actin. Elsewhere in the human body, bundles of actin form contractile muscles, and matrices of actin are responsible for the gel-like properties of various cells’ cytoplasm. However, the foreshortened actin fibers in the proto-filaments act as rigid rods held in suspension by six precisely positioned fibers made of the actin-binding protein spectrin.


Robert Skelton, a professor of mechanical and aerospace engineering at the Jacobs School of Engineering and a co-author of the study, employed the unorthodox approach of modeling the proto-filaments as if they were part of a tensegrity structure. Artists have been more familiar with rod-and-cable tensegrity structures than scientists. The most celebrated tensegrity structures may be the rod-and-cable sculptures of R. Buckminster Fuller, the futurist and inventor of the geodesic dome. Sung asked Skelton to collaborate on her red blood cell project because Skelton and his students have pioneered the development of rigorous scientific tools to analyze the movement and balance of forces in many types of tensegrity systems.

“Although we made several assumptions, our model is an important step toward our goal of understanding the molecular basis of cell membrane mechanics,” said Sung.

Sung, Skelton, and post-doctoral fellows Carlos Vera and Frederic Bossens combined mathematical modeling of a proto-filament as a tensegrity structure with a visualization technique that revealed how a single proto-filament moves in response to the pulling force of six spectrin fibers attached to it. Their paper in Annals of Biomedical Engineering uses aeronautical terms commonly used to describe the changing position of an airplane to explain how the six attached spectrin fibers make a proto-filament swivel and flip.

Microscopy studies by other researchers have documented that the yaw of a proto-filament, its left or right position, is near random, whereas the pitch, or upward tilt from the plane of the membrane, is more parallel to the membrane than perpendicular to it. Sung’s team was pleasantly surprised that its model also generated near-random yaw angles for the proto-filament during deformation of the red blood cell and no more than 18 degrees of pitch relative to the membrane in most cases. “Our model is the first to come close to duplicating the 3-D behavior that is observed in nature,” said Skelton.

The modeling suggests that the more a red blood cell is mechanically deformed, the more likely its individual proto-filaments will rotate left and right like a baseball bat swung over home plate. “These back-and-forth sweeping motions would speed up the movement of oxygen from one side of the membrane to the other,” said Sung. “We think this model may explain why the deformations of red blood cells squeezing through narrow capillary openings are so important: the movement of proto-filaments may effectively enhance the diffusion of oxygen from red blood cells deep in tissues and organs where the exchange is most needed.”

The team is planning to broaden its analysis to include the effects of trans-membrane proteins that physically anchor the underlying protein network to the red blood cell membrane. The team also plans to enlarge its simulation to visualize more than one proto-filament at a time, and eventually model the simultaneously movement of all 33,000 proto-filaments in a cell.

“We were amazed that we can actually predict and simulate the behavior of components of the red cell skeleton at the nano-scale and estimate tension forces at the pico-Newton level,” said Sung. “We may also be able to apply our approach to understand what’s happening in the rupture-prone red blood cells of people with hemolytic anemias.”

Carlos Vera, Robert Skelton, Frederic Bossens, and Lanping Amy Sung, "3-D Nano-mechanics of an Erythrocyte Junctional Complex in Equibiaxial and Anisotropic Deformations" (2005). Annals of Biomedical Engineering. 33 (10), pp 1387–1404.

Rex Graham | EurekAlert!
Further information:
http://www.jacobsschool.ucsd.edu/news_events/releases/release.sfe?id=484
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>