Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover secret behind human red blood cell’s amazing flexibility

25.10.2005


A human red blood cell is a dimpled ballerina, ceaselessly spinning, tumbling, bending, and squeezing through openings narrower than its width to dispense life-giving oxygen to every corner of the body. In a paper published in the October issue of Annals of Biomedical Engineering, which was made available online on Oct. 21, a team of UCSD researchers describe a mathematical model that explains how a mesh-like protein skeleton gives a healthy human red blood cell both its rubbery ability to stretch without breaking, and a potential mechanism to facilitate diffusion of oxygen across its membrane.



“Red cells are one of the few kinds of cells in the body with no nucleus and only a thin layer of protein skeleton under their membrane: they are living bags of hemoglobin,” said Amy Sung, a professor of bioengineering at UCSD’s Jacobs School of Engineering and coauthor of the study. “Very little is known about how the elements of the membrane skeleton behave when red blood cells deform, and we were amazed at what our simulation revealed.” Scientists have been mystified for years by the human red blood cell membrane skeleton, a network of roughly 33,000 protein hexagons that looks like a microscopic geodesic dome. Unfortunately, neither the architecture of the dome nor the structures of individual proteins that make up the hexagons reveal the details of how the remarkably regular organization actually works.

Sung and her collaborators at the Jacobs School of Engineering focused on what they view is a key component at the center of each hexagon, a rod-shaped protein complex called the proto-filament. The proto-filament is 37 nanometers in length and made of a protein called actin. Elsewhere in the human body, bundles of actin form contractile muscles, and matrices of actin are responsible for the gel-like properties of various cells’ cytoplasm. However, the foreshortened actin fibers in the proto-filaments act as rigid rods held in suspension by six precisely positioned fibers made of the actin-binding protein spectrin.


Robert Skelton, a professor of mechanical and aerospace engineering at the Jacobs School of Engineering and a co-author of the study, employed the unorthodox approach of modeling the proto-filaments as if they were part of a tensegrity structure. Artists have been more familiar with rod-and-cable tensegrity structures than scientists. The most celebrated tensegrity structures may be the rod-and-cable sculptures of R. Buckminster Fuller, the futurist and inventor of the geodesic dome. Sung asked Skelton to collaborate on her red blood cell project because Skelton and his students have pioneered the development of rigorous scientific tools to analyze the movement and balance of forces in many types of tensegrity systems.

“Although we made several assumptions, our model is an important step toward our goal of understanding the molecular basis of cell membrane mechanics,” said Sung.

Sung, Skelton, and post-doctoral fellows Carlos Vera and Frederic Bossens combined mathematical modeling of a proto-filament as a tensegrity structure with a visualization technique that revealed how a single proto-filament moves in response to the pulling force of six spectrin fibers attached to it. Their paper in Annals of Biomedical Engineering uses aeronautical terms commonly used to describe the changing position of an airplane to explain how the six attached spectrin fibers make a proto-filament swivel and flip.

Microscopy studies by other researchers have documented that the yaw of a proto-filament, its left or right position, is near random, whereas the pitch, or upward tilt from the plane of the membrane, is more parallel to the membrane than perpendicular to it. Sung’s team was pleasantly surprised that its model also generated near-random yaw angles for the proto-filament during deformation of the red blood cell and no more than 18 degrees of pitch relative to the membrane in most cases. “Our model is the first to come close to duplicating the 3-D behavior that is observed in nature,” said Skelton.

The modeling suggests that the more a red blood cell is mechanically deformed, the more likely its individual proto-filaments will rotate left and right like a baseball bat swung over home plate. “These back-and-forth sweeping motions would speed up the movement of oxygen from one side of the membrane to the other,” said Sung. “We think this model may explain why the deformations of red blood cells squeezing through narrow capillary openings are so important: the movement of proto-filaments may effectively enhance the diffusion of oxygen from red blood cells deep in tissues and organs where the exchange is most needed.”

The team is planning to broaden its analysis to include the effects of trans-membrane proteins that physically anchor the underlying protein network to the red blood cell membrane. The team also plans to enlarge its simulation to visualize more than one proto-filament at a time, and eventually model the simultaneously movement of all 33,000 proto-filaments in a cell.

“We were amazed that we can actually predict and simulate the behavior of components of the red cell skeleton at the nano-scale and estimate tension forces at the pico-Newton level,” said Sung. “We may also be able to apply our approach to understand what’s happening in the rupture-prone red blood cells of people with hemolytic anemias.”

Carlos Vera, Robert Skelton, Frederic Bossens, and Lanping Amy Sung, "3-D Nano-mechanics of an Erythrocyte Junctional Complex in Equibiaxial and Anisotropic Deformations" (2005). Annals of Biomedical Engineering. 33 (10), pp 1387–1404.

Rex Graham | EurekAlert!
Further information:
http://www.jacobsschool.ucsd.edu/news_events/releases/release.sfe?id=484
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>