Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery: If it weren’t for this enzyme, decomposing pesticide would take millennia

25.10.2005


An enzyme inside a bacterium that grows in the soil of potato fields can -- in a split second -- break down residues of a common powerful pesticide used for killing worms on potatoes, researchers have found.



That may be expensive for farmers but lucky for the environment because University of North Carolina at Chapel Hill scientists have now discovered that if that particular enzyme weren’t there, it would take 10,000 years for just half of the widely used pesticide to decompose. And the chemical would remain in the soil of the potato fields where it is now used in colossal amounts, contaminating groundwater and posing a threat to human and animal health.

A report on the unusual discovery appears online in the Proceedings of the National Academy of Sciences Monday (Oct. 24). Authors are Christopher M. Horvat, a UNC chemistry major from Spruce Pine, who plans to become a physician, and Dr. Richard V. Wolfenden, Alumni Distinguished professor of biochemistry and biophysics at the UNC School of Medicine.


"The half-life of the pesticide is longer, by several orders of magnitude, than the half-lives of other known environmental pollutants in water," Wolfenden said. "The half lives of atrazine, aziridine, paraoxon and 1, 2-dichloroethane, for example, are five months, 52 hours, 13 months and 72 years, respectively."

In contrast, the half-life of the potato pesticide residue chloroacrylate -- 10,000 years -- matches the half-life of plutonium-239, the hazardous isotope produced in nuclear power plants, he said.

The bacteria Pseudomonas pavonaceae have evolved in the soil in which the potato pesticide 1, 3-dichloropropene is used and can grow on it as their only source of carbon and energy, the scientist said. The enzyme responsible for degrading the pesticide may have evolved since the chemical’s first use on potato fields in 1946. Common names for the agricultural product are Shell D-D and Telone II.

"There is also a possibility, which I consider strong, that this surprising enzyme may have already existed in the bacteria and that it catalyzes another, so-far unidentified reaction that these bacteria require for normal metabolism," Wolfenden said. "The apparently novel catalytic activity of the enzyme may be a lucky side reaction of an enzyme that evolved to act on some natural substance yet to be identified."

Horvat carried out the work in Wolfenden’s laboratory by analyzing what happened to the pesticide’s residue at various temperatures and then extrapolating the results to room temperature to see how long the pesticide would last if the bacteria weren’t busy digesting it in the blink of an eye.

"It was just amazing that this enzyme can degrade something so quickly when otherwise it would take thousands of years," Horvat said. "It’s really a neat picture of what evolution and natural selection can do."

Although it’s hard to predict, the work may have implications for people designing enzymes later on, he said. Using enzymes in reactions can greatly reduce the cost of a lot of chemical processes.

Finding the enzyme in bacteria in fields never before exposed to the pesticide Shell D-D would demonstrate that that it had not evolved in the past 50 years, Wolfenden said.

"What is also remarkable, and unexpected, is that in the bacteria that contain this ‘new’ enzyme, CaaD, there is another enzyme, tautomerase, that has a structure similar to that of CaaD and catalyzes a reaction that’s involved in conventional metabolism," he said. "So it’s thought that tautomerase and CaaD may have a common evolutionary origin. The surprise is that the ‘new ‘ enzyme is better at catalyzing this new reaction than the ‘old’ enzyme is at catalyzing that conventional reaction."

If the enzyme did appear in just the past 50 years, that would be extraordinary example of the "majestic hand of evolution at work," Wolfenden said.

For an undergraduate to publish a paper in such a prestigious scientific journal as the Proceedings of the National Academy of Sciences also is quite unusual, he said. That success in part reflects UNC’s continuing efforts to involve undergraduates in cutting-edge research. The National Institutes of Health supported the study.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>