Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene that helps mosquitoes fight off malaria parasite identified


Researchers have identified a gene in mosquitoes that helps the insects to fight off infection by the Plasmodium parasite, which causes malaria in humans. Anopheles mosquitoes transmit the malaria parasite to nearly 550 million people worldwide each year with these cases resulting in more than 2 million deaths annually. The protective gene was identified in a study conducted by a team of investigators from the Johns Hopkins Bloomberg School of Public Health’s Malaria Research Institute, the Imperial College of London and the University of Texas Medical Branch. It will be published in the Online Early Edition of the Proceedings of the National Academy of Sciences the week of October 24.

The malaria-causing Plasmodium has a complex life cycle. Mosquitoes become infected with the parasite when they draw blood from humans who have malaria. As the parasite matures, it moves from the mosquito’s midgut to its salivary glands. Once in the salivary glands, the Plasmodium can be injected into another human when the mosquito feeds again.

In the study, the researchers determined that the SPRN6 gene, which is normally switched off in Anopheles stephensi and Anopheles gambiae mosquitoes, is switched on when they are infected with the malaria parasite. To determine the function of SPRN6, the researchers deactivated the gene in the mosquitoes through a process called RNA interference. They observed that the number of parasites that developed in Anopheles stephensi mosquitoes increased three-fold when the gene was knocked out. In Anopheles gambiae mosquitoes, removing the SPRN6 gene delayed the process of parasite lysis, whereby the mosquito rids itself of the parasite.

"This study furthers our knowledge of the malaria-parasite lysis in mosquitoes. It may help provide better tools for controlling the disease in the future," said lead author Eappen G. Abraham, PhD, research associate in the Department of Molecular Microbiology and Immunology and the Malaria Research Institute at the Bloomberg School of Public Health.

"These results provided new insights into how the mosquito defends itself from the malaria parasite. More research is needed, but we plan to apply this knowledge in the development of new approaches to control the disease," said co-author Marcelo Jacobs-Lorena, PhD, a professor in the Department of Molecular Microbiology and Immunology and the Malaria Research Institute at the Bloomberg School of Public Health.

Abraham and Jacobs-Lorena are developing a transgenic mosquito in which the SPRN6 gene is permanently switched on, in an effort to create a mosquito that would be immune to the Plasmodium parasite. They believe that such a mosquito could help disrupt the transmission of malaria to humans.

"An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites" was written by Eappen G. Abraham, Sofia Pinto, Anil Ghosh, Dana L. Vanlandingham, Aidan Budd, Stephen Higgs, Fotis C. Kafatos, Marcelo Jacobs-Lorena and Kristin Michel. Abraham, Ghosh and Jacobs-Lorena are with the Johns Hopkins Bloomberg School of Public Health. Pinto, Budd, Kafatos and Michel are with the European Molecular Biology Laboratory in Heidelberg, Germany and the Imperial College of London. Vanlandingham and Higgs are with the Department of Pathology at the University of Texas Medical Branch.

Tim Parsons | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>