Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that helps mosquitoes fight off malaria parasite identified

25.10.2005


Researchers have identified a gene in mosquitoes that helps the insects to fight off infection by the Plasmodium parasite, which causes malaria in humans. Anopheles mosquitoes transmit the malaria parasite to nearly 550 million people worldwide each year with these cases resulting in more than 2 million deaths annually. The protective gene was identified in a study conducted by a team of investigators from the Johns Hopkins Bloomberg School of Public Health’s Malaria Research Institute, the Imperial College of London and the University of Texas Medical Branch. It will be published in the Online Early Edition of the Proceedings of the National Academy of Sciences the week of October 24.



The malaria-causing Plasmodium has a complex life cycle. Mosquitoes become infected with the parasite when they draw blood from humans who have malaria. As the parasite matures, it moves from the mosquito’s midgut to its salivary glands. Once in the salivary glands, the Plasmodium can be injected into another human when the mosquito feeds again.

In the study, the researchers determined that the SPRN6 gene, which is normally switched off in Anopheles stephensi and Anopheles gambiae mosquitoes, is switched on when they are infected with the malaria parasite. To determine the function of SPRN6, the researchers deactivated the gene in the mosquitoes through a process called RNA interference. They observed that the number of parasites that developed in Anopheles stephensi mosquitoes increased three-fold when the gene was knocked out. In Anopheles gambiae mosquitoes, removing the SPRN6 gene delayed the process of parasite lysis, whereby the mosquito rids itself of the parasite.


"This study furthers our knowledge of the malaria-parasite lysis in mosquitoes. It may help provide better tools for controlling the disease in the future," said lead author Eappen G. Abraham, PhD, research associate in the Department of Molecular Microbiology and Immunology and the Malaria Research Institute at the Bloomberg School of Public Health.

"These results provided new insights into how the mosquito defends itself from the malaria parasite. More research is needed, but we plan to apply this knowledge in the development of new approaches to control the disease," said co-author Marcelo Jacobs-Lorena, PhD, a professor in the Department of Molecular Microbiology and Immunology and the Malaria Research Institute at the Bloomberg School of Public Health.

Abraham and Jacobs-Lorena are developing a transgenic mosquito in which the SPRN6 gene is permanently switched on, in an effort to create a mosquito that would be immune to the Plasmodium parasite. They believe that such a mosquito could help disrupt the transmission of malaria to humans.

"An immune-responsive serpin, SRPN6, mediates mosquito defense against malaria parasites" was written by Eappen G. Abraham, Sofia Pinto, Anil Ghosh, Dana L. Vanlandingham, Aidan Budd, Stephen Higgs, Fotis C. Kafatos, Marcelo Jacobs-Lorena and Kristin Michel. Abraham, Ghosh and Jacobs-Lorena are with the Johns Hopkins Bloomberg School of Public Health. Pinto, Budd, Kafatos and Michel are with the European Molecular Biology Laboratory in Heidelberg, Germany and the Imperial College of London. Vanlandingham and Higgs are with the Department of Pathology at the University of Texas Medical Branch.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>