Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find gland that tells fruit flies when to stop growing


Many baffled parents have wondered whether their teenagers would ever stop growing. The answer is obvious, but researchers have never really quite understood just how an organism determines when it has reached its optimal size and growth should cease.

Photo credit: Christen Mirth
A normal fruit fly in the pupa stage of development (left) lies next to one in which growth has been inhibited by an artificially enlarged prothoracic gland.

Now University of Washington biologists studying the physiology of Drosophila melanogaster, the common fruit fly, have discovered an organ that assesses the size of the juvenile and signals when it has reached a critical weight to begin metamorphosis into an adult.

The team, led by postdoctoral researcher Christen Mirth, found that the prothoracic gland, a major endocrine organ situated just in front of the brain, assesses the fly’s size as it grows during the larval stage. The gland then sends hormonal signals when it senses the fly has reached a size appropriate to enter adulthood.

The scientists found they could use the pathway that sends insulin to a fly’s cells to genetically manipulate the size of the prothoracic gland, part of a more complex structure called the ring gland, and send false signals about a fly’s weight. Enlarging the gland by increasing insulin signaling triggered metamorphosis at smaller sizes than usual. Suppressing the gland’s growth by decreasing insulin signaling allowed larvae to grow larger than usual before entering the pupal stage that precedes adulthood.

Mirth and her colleagues, UW biology professors Lynn Riddiford and James Truman, surmised that size assessment had to be accomplished through a major endocrine organ, so they screened all fruit fly endocrine glands, enlarging or reducing them and studying the effect on body size.

"The only thing that gave us the size shifts that we had hypothesized was changing the size of the prothoracic gland. Enlarging the organ made the animals small, and vice versa," Mirth said. "It seems to be a nutrition-related phenomenon. You sort of trick the fruit fly into thinking it is bigger than it really is."

Enlarging the prothoracic gland produces much smaller-than-normal adult fruit flies, Riddiford said. "In humans, it would be as if you reached puberty when you were 6 years old."

In the research, Mirth determined the critical weight for fruit flies to begin metamorphosis, and examined when larvae with enlarged prothoracic glands reached that weight compared with normal larvae. This was done by starving larvae of known weight and age, then determining what proportion of them reached metamorphosis.

She found that larvae with enlarged prothoracic glands reached critical weight earlier and at a much smaller size than normal larvae. But she also found that flies with enlarged glands reached that critical weight and initiated metamorphosis before they had reached a size that would allow them to survive metamorphosis. Suppressing prothoracic gland growth by reducing insulin signaling caused flies to spend longer in each stage of development, allowing them to be larger than normal when they emerged into adulthood.

"Normal larvae would never initiate metamorphosis before they were of a sufficient size to survive the process," Mirth said.

This marks the first time a tissue such as the prothoracic gland has been found to be a factor in size assessment, she said, and it provides a more complete picture of how an organism’s growth is controlled.

Mirth is lead author of the work, which is published in the Oct. 25 edition of the journal Current Biology and was funded by the UW Royalty Research Fund.

"What is particularly exciting about these findings is that now that we know how size is assessed in Drosophila larvae, we can begin examining other species for analogous structures," she said.

The primary goal of the research, conducted in Riddiford’s and Truman’s laboratories, is to get a fuller understanding of an organism’s growth process. Scientists have had a fairly good understanding of how growth is regulated by environmental factors such as nutrition, but the new research clarifies the second part of the picture – how an organism knows that growth should stop.

"There has to be a way for an animal to assess its size, and I don’t think it does it by looking in the mirror," Riddiford said.

Vince Stricherz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>