Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Go with the flow: How cells use biological flows to signal and organize


An EPFL (Ecole Polytechnique Federale de Lausanne) team led by professor Melody Swartz has demonstrated for the first time that the presence of very slow biological flows affects the extracellular environment in ways that are critical for tissue formation and cell migration. Their results will appear online the week of October 24 in Proceedings of the National Academy of Sciences.

A major challenge for tissue engineering is to identify the essential environmental ingredients that cells need in order to communicate, migrate, and organize into living tissues. One of these ingredients is the presence, outside the cell, of minute changes in the concentration of special proteins called morphogens. Cells can sense even the tiniest differences in morphogen concentration and will alter their functions accordingly. In embryonic development, stem cells differentiate into organs by means of the actions of morphogens. And even cancer cells can use morphogens to grow, induce a blood supply, and metastasize.

Although the concept of cell organization in response to these morphogen gradients is well documented, little is known about how these subtle concentration changes get established the first place, particularly within the dynamic environment of a real tissue. This research provides evidence that tiny biophysical forces in the extracellular environment may play an important role.

Swartz and her colleagues have found that slow biophysical flows, such as the slow-moving flows that exist between the lymphatic and blood capillaries to help transport macromolecules from blood to tissues, play an important role in the formation of these gradients. They used a computational model developed by PhD student Mark Fleury to demonstrate that in the presence of a slow moving flow, cells can set up and even amplify their own morphogen gradients. "This exquisite system may have evolved as a way for cells to gain better control of their local extracellular surroundings, where they can use the fluid forces that exist in tissues to direct and amplify communication and organization," explains Swartz.

First author Cara-Lynn Helm (a PhD student at Northwestern University) used an in vitro model of capillary formation to demonstrate proof-of-concept that small biophysical flows play a critical role in tissue formation. She placed human blood and lymphatic endothelial cells in an environment containing matrix-bound vascular endothelial growth factor (VEGF) and subjected the system to a very slow externally-induced flow.

Without the flow, very little cell organization took place. With the combination of flow and VEGF, the endothelial cells networked and organized, quickly forming capillaries. "We gave our cells the right environment and a physical impetus and the two conditions combined synergistically, driving the cells to organize into functional structures," says Swartz.

This research shows clearly and for the first time that small biophysical forces are among the critical environmental ingredients that cells need to migrate and organize into functional tissues. This new knowledge could be immediately used in tissue engineering applications. It could also be used to improve our understanding of basic cellular signaling and organization processes.

"This result can be generalized to any system that is driven by protein gradients that bind to the extracellular matrix," notes Swartz. "This includes proteins that drive immune cells into the lymphatic system, an important part of the immune response, and others that drive tumor cells into the lymphatic system, where they spread and become deadly. We need to understand these basic processes if we want to design strategies to enhance or inhibit them."

Melody Swartz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>