Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Go with the flow: How cells use biological flows to signal and organize

25.10.2005


An EPFL (Ecole Polytechnique Federale de Lausanne) team led by professor Melody Swartz has demonstrated for the first time that the presence of very slow biological flows affects the extracellular environment in ways that are critical for tissue formation and cell migration. Their results will appear online the week of October 24 in Proceedings of the National Academy of Sciences.



A major challenge for tissue engineering is to identify the essential environmental ingredients that cells need in order to communicate, migrate, and organize into living tissues. One of these ingredients is the presence, outside the cell, of minute changes in the concentration of special proteins called morphogens. Cells can sense even the tiniest differences in morphogen concentration and will alter their functions accordingly. In embryonic development, stem cells differentiate into organs by means of the actions of morphogens. And even cancer cells can use morphogens to grow, induce a blood supply, and metastasize.

Although the concept of cell organization in response to these morphogen gradients is well documented, little is known about how these subtle concentration changes get established the first place, particularly within the dynamic environment of a real tissue. This research provides evidence that tiny biophysical forces in the extracellular environment may play an important role.


Swartz and her colleagues have found that slow biophysical flows, such as the slow-moving flows that exist between the lymphatic and blood capillaries to help transport macromolecules from blood to tissues, play an important role in the formation of these gradients. They used a computational model developed by PhD student Mark Fleury to demonstrate that in the presence of a slow moving flow, cells can set up and even amplify their own morphogen gradients. "This exquisite system may have evolved as a way for cells to gain better control of their local extracellular surroundings, where they can use the fluid forces that exist in tissues to direct and amplify communication and organization," explains Swartz.

First author Cara-Lynn Helm (a PhD student at Northwestern University) used an in vitro model of capillary formation to demonstrate proof-of-concept that small biophysical flows play a critical role in tissue formation. She placed human blood and lymphatic endothelial cells in an environment containing matrix-bound vascular endothelial growth factor (VEGF) and subjected the system to a very slow externally-induced flow.

Without the flow, very little cell organization took place. With the combination of flow and VEGF, the endothelial cells networked and organized, quickly forming capillaries. "We gave our cells the right environment and a physical impetus and the two conditions combined synergistically, driving the cells to organize into functional structures," says Swartz.

This research shows clearly and for the first time that small biophysical forces are among the critical environmental ingredients that cells need to migrate and organize into functional tissues. This new knowledge could be immediately used in tissue engineering applications. It could also be used to improve our understanding of basic cellular signaling and organization processes.

"This result can be generalized to any system that is driven by protein gradients that bind to the extracellular matrix," notes Swartz. "This includes proteins that drive immune cells into the lymphatic system, an important part of the immune response, and others that drive tumor cells into the lymphatic system, where they spread and become deadly. We need to understand these basic processes if we want to design strategies to enhance or inhibit them."

Melody Swartz | EurekAlert!
Further information:
http://www.epfl.ch
http://lmbm.epfl.ch/

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>