Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maximum longevity inherited from the father

25.10.2005


The parts of the genetic make-up that are thought to determine an individual’s maximum possible longevity, so-called telomeres, are inherited from the father but not the mother. This is shown by a research team at Umeå University in the coming issue of the U.S. scientific journal Proceedings of the National Academy of Sciences.



Telomeres are genetic material with repetitive content at the ends of DNA, and their main function is believed to be to protect the rest of the genetic material from degradation. Telomeres are shortened each time a cell divides, which in broad terms means that the longer a cell’s telomeres are, the longer the individual can live, in theory. A person’s telomeres are shortened with age, which the findings of the study indeed show: telomeres were shortened by an average of 21 nitrogen base pairs per year in the subjects studied.

The study, soon to appear in the U.S. scientific journal PNAS, Proceedings of the National Academy of Sciences, was carried out on 132 healthy subjects in 49 different families with no close kinship to each other in northern Sweden. The subjects consisted of fathers and mothers (mean age 66 years) and their daughters and sons (mean age 37 years). Blood samples were taken, and mononuclear immune cells were culled.


Half of these were simply frozen, while the other half were infected with Epstein-Barr virus (EBV) and cultured for 18-55 days, whereupon the surviving cells were frozen. DNA was then extracted from both cell types using standardized techniques, and the length of the telomeres was ascertained.

The findings show that changes in the length of the telomeres in the cultured cells are determined by the original length of the telomeres, and the length of the telomeres in the second generation, both sons and daughters, proved to be inherited from the father.

The work was carried out by doctoral candidate Katarina Nordfjäll and Professor Göran Roos at the Division of Pathology, Department of Medical Biosciences, Umeå University, and Research Engineer Åsa Larfalk, Statistician Petter Lindgren, and Professor Dan Holmber, all three at the Division of Medical and Clinical Genetics, Department of Medical Biosciences, Umeå University.

Bertil Born | alfa
Further information:
http://www.umu.se/medfak/forskning/PNAS-telomerer-24-okt.pdf

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>