Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of Gene Expression Associated with Ovarian Cancer

25.10.2005


The expression of two specific genes is almost completely downregulated in ovarian cancer tumours. An extensive analysis of gene expression in ovarian cancer tumour cells has revealed this important finding, which should be an aid to early diagnosis. The insights gained by the research at the Medical University of Vienna with the support of the Austrian Science Fund FWF are also central to a recently launched EU project aimed at optimising ovarian cancer diagnosis.



Some 63,000 cases of ovarian cancer are diagnosed in Europe every year. The symptoms of the disease seldom appear until it has reached an advanced stage, by which time it is often too late for effective treatment. Delayed diagnosis causes over 30,000 deaths.

In the Genes


A team led by Prof. Michael Krainer of the Clinic for Internal Medicine I at the Medical University of Vienna that has been looking for an early diagnosis method has now made a major breakthrough. Comparison of normal ovarian cells with advanced ovarian cancer cells highlighted molecular genetic differences. The genes identified as N33 and EFA6R are in some cases almost completely inactivated in the cancer cells. Commenting on the usefulness of the discovery in the diagnosis of cancer, Prof. Krainer noted: "At present it looks as though these two genes have already lost their activity before the appearance of clinical symptoms. We presume that this happens because methyl groups are attached to the gene’s building blocks. This is a common means of regulating gene activity. Methylation like this is easy to detect and could be an early warning sign for a developing cancer."

The expression of several genes on a particular band of the human chromosome 8 in tumour cells from over 90 patients were measured during the FWF project. In ovarian cancer there is often a loss of this chromosomal band. Earlier work in this area by Prof. Krainer’s team had already identified 22 genes. The current project has now been able to demonstrate that a total of five of these genes show very low expression levels in tumour cells. N33 and EFA6R stood out, as the reduction in their expression was associated with the progression of the disease. However, as yet the function of the genes can only be speculated on. N33 may be involved in the regulation of cell death and EFA6R in signal transmission.

Coming to your Screens

Together with Prof. Robert Zeillinger’s group at the Gynaecology and Obstetrics Clinic, Prof. Krainer has succeeded in establishing a core research focus on molecular cancer diagnostics that has gained an international reputation. Only a short time ago the Austrian scientists succeeded in identifying a receptor molecule, the absence of which promotes the development of ovarian cancer, and now they are also coordinating groups in six countries in an EU project that has just been approved. The aim of the EUR 4 million project is to identify molecular markers that would permit early diagnosis of ovarian cancer.

Highlighting the advances being made in cancer diagnosis, Prof. Krainer said: "The next step in early detection is the diagnosis of molecular genetic markers such as methylations, as they provide information on the actual development of cancer in individual patients. This means that analysis of molecular genetic markers is an ideal match for diagnosis of genetic predisposition to breast and colon cancers, for example." The diagnosis of genetic predispositions offers vital information on the likelihood that a person will have a hereditary disposition for these types of cancer. Today these genetic diagnostics already offer opportunities for adjusting expensive screening tests to individual risk profiles. This saves lifes and money - the reason why Dutch health insurance funds are prepared to pay for genetic diagnosis.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/press/ovarian_cancer.html

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>