Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lack of Gene Expression Associated with Ovarian Cancer


The expression of two specific genes is almost completely downregulated in ovarian cancer tumours. An extensive analysis of gene expression in ovarian cancer tumour cells has revealed this important finding, which should be an aid to early diagnosis. The insights gained by the research at the Medical University of Vienna with the support of the Austrian Science Fund FWF are also central to a recently launched EU project aimed at optimising ovarian cancer diagnosis.

Some 63,000 cases of ovarian cancer are diagnosed in Europe every year. The symptoms of the disease seldom appear until it has reached an advanced stage, by which time it is often too late for effective treatment. Delayed diagnosis causes over 30,000 deaths.

In the Genes

A team led by Prof. Michael Krainer of the Clinic for Internal Medicine I at the Medical University of Vienna that has been looking for an early diagnosis method has now made a major breakthrough. Comparison of normal ovarian cells with advanced ovarian cancer cells highlighted molecular genetic differences. The genes identified as N33 and EFA6R are in some cases almost completely inactivated in the cancer cells. Commenting on the usefulness of the discovery in the diagnosis of cancer, Prof. Krainer noted: "At present it looks as though these two genes have already lost their activity before the appearance of clinical symptoms. We presume that this happens because methyl groups are attached to the gene’s building blocks. This is a common means of regulating gene activity. Methylation like this is easy to detect and could be an early warning sign for a developing cancer."

The expression of several genes on a particular band of the human chromosome 8 in tumour cells from over 90 patients were measured during the FWF project. In ovarian cancer there is often a loss of this chromosomal band. Earlier work in this area by Prof. Krainer’s team had already identified 22 genes. The current project has now been able to demonstrate that a total of five of these genes show very low expression levels in tumour cells. N33 and EFA6R stood out, as the reduction in their expression was associated with the progression of the disease. However, as yet the function of the genes can only be speculated on. N33 may be involved in the regulation of cell death and EFA6R in signal transmission.

Coming to your Screens

Together with Prof. Robert Zeillinger’s group at the Gynaecology and Obstetrics Clinic, Prof. Krainer has succeeded in establishing a core research focus on molecular cancer diagnostics that has gained an international reputation. Only a short time ago the Austrian scientists succeeded in identifying a receptor molecule, the absence of which promotes the development of ovarian cancer, and now they are also coordinating groups in six countries in an EU project that has just been approved. The aim of the EUR 4 million project is to identify molecular markers that would permit early diagnosis of ovarian cancer.

Highlighting the advances being made in cancer diagnosis, Prof. Krainer said: "The next step in early detection is the diagnosis of molecular genetic markers such as methylations, as they provide information on the actual development of cancer in individual patients. This means that analysis of molecular genetic markers is an ideal match for diagnosis of genetic predisposition to breast and colon cancers, for example." The diagnosis of genetic predispositions offers vital information on the likelihood that a person will have a hereditary disposition for these types of cancer. Today these genetic diagnostics already offer opportunities for adjusting expensive screening tests to individual risk profiles. This saves lifes and money - the reason why Dutch health insurance funds are prepared to pay for genetic diagnosis.

Till C. Jelitto | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>