Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhaled nitric oxide may help sickle cell disease

24.10.2005


Inhaling a small dose of nitric oxide gas may one day help sickle cell patients avoid pain crises and live healthier lives, researchers say.



Nitric oxide may help normalize a sickle cell patient’s hemoglobin by restoring the natural charge and shape to the oxygen-carrying component of red blood cells, Medical College of Georgia researchers have found.

“Hemoglobin S plus nitric oxide behaves much like normal adult hemoglobin, which does not sickle,” says Dr. C. Alvin Head, chair of the Medical College of Georgia Department of Anesthesiology and Perioperative Medicine.


In fact, their test-tube studies of human hemoglobin show nitric oxide not only prevents unhealthy clustering of hemoglobin S molecules but can melt existing polymers, leaving more hemoglobin free to do its job of oxygen delivery to the body.

Inhaling the short-acting gas naturally found on hemoglobin allows low concentrations to come in close contact with red blood cells and essentially turns the lungs into a hemoglobin repair shop.

“This is clearly a novel idea,” Dr. Head says of findings that show the extra nitric oxide changes the neutral charge of hemoglobin S to the slightly negative charge much like normal hemoglobin. It could also help prevent development of the unwanted hemoglobin S polymers in the microcirculation when oxygen levels are lower, once hemoglobin releases its oxygen to the tissues.

Those surface irregularities create unfortunate puzzle pieces that help hemoglobin S molecules fit together to form the polymer. The neutral charge permits this abnormal bonding that eventually deforms the red blood cells that carry them, Dr. Head says. “As the polymer gets longer, it binds to the red cell membrane and begins to deform the cell. If you can prevent this from occurring, you won’t get the abnormal-shaped cells,” he says or the resulting pain crises as the sickled cells deprive body tissue of adequate oxygen.

Add nitric oxide to the equation and the newly created negative charge helps hemoglobin molecules repel each other and stay independent, round and functional, he says of findings being presented during the American Society of Anesthesiologists’ annual meeting in Atlanta Oct. 22-26. Sabina Wang, a research associate who performed these studies, will present their work. Dr. Steffen Meiler, vice chair of research for the MCG Department of Anesthesiology and Perioperative Medicine, also is a contributing co-author.

Oxygen also can break apart dangerous polymers, but the smaller nitric oxide is more agile, has a higher affinity for hemoglobin and – perhaps most importantly – can normalize the charge of hemoglobin S, Ms. Wang notes.

Anesthesiologists and other physicians already give low doses of nitric oxide to patients for reasons such as hypoxic respiratory failure in the newborn.

“We knew that nitric oxide would bind to hemoglobin very, very rapidly,” says Dr. Head. “That has been very well proven in the medical literature. In fact, that is the basis of why when you inhale it in very low concentrations, you do not get systemic vascular effects,” he says of the powerful dilator of blood vessels. “It rapidly crosses the lungs, binds to the hemoglobin, then circulates in the blood.” It was when he was giving nitric oxide to lung transplant patients years ago, patients who might end up breathing the gas for days or weeks at a time without apparent ill effects, that he first considered how it also might benefit sickle cell patients.

Previously published studies by Dr. Head and his colleagues in a hypoxic animal model for sickle cell disease showed the animals who breathed nitric oxide gas are the ones that survived.

“This is not a cure, but we think it will get patients out of a crisis earlier or maybe prevent a crisis,” says Dr. Head of the potential therapy that may one day be used by sickle cells patients like inhalers are used by asthmatics.

The MCG researchers already are working with University of Georgia researchers to crystalize hemoglobin S and identify all points of action for nitric oxide. “We know there is a charge change globally, but we want to identify the exact sites where it’s binding and might have its biggest impact,” Dr. Head says.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>