Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new turn-on for genes

24.10.2005


Scientists find structure relevant to cell growth and cancer



Researchers discovered a special type of molecular structure that helps keep genes properly turned off until the structure is ejected from those genes in a regulated manner to help turn the genes on. The discovery is reported in the Oct. 21 issue of the journal Cell by scientists from the Huntsman Cancer Institute at the University of Utah.

In all organisms, the genome is split into chromosomes (compressed long strands of DNA) which are subdivided into functional DNA segments called genes. Genes function as the blueprints for building particular pieces of cellular machinery. However, different types of cells each require different types of cellular machinery, and must produce that machinery according to a biological timetable. A central issue in molecular biology is finding out how a cell regulates which genes are on, or active, and which genes are off, or repressed. This topic has direct relevance to human disease, as improper activation or repression of genes that regulate cellular growth is a common feature of cancer cells.


"We must understand how genes are activated or repressed in normal cells in order to understand how this process is misregulated in cancer cells," says Brad Cairns, Ph.D., lead scientist on the study and an investigator with Huntsman Cancer Institute. "We are beginning to understand how gene activation and repression is altered in cancer cells, and how that leads to tumor growth. However, the design of targeted treatments that can correct these alterations will require a deep knowledge of the basic cellular mechanisms that regulate gene expression."

The scientists studied a group of proteins known as histones, which form disk-like structures called nucleosomes when they are wrapped by genes. Under an electron microscope, the nucleosomes look like beads strung along the DNA strand. Normal nucleosomes block access to the cellular machinery that reads the blueprint stored in the gene, keeping the gene off or repressed.

Huntsman Cancer Institute investigators discovered that certain genes contain a special type of nucleosome bearing a protein called Htz1. This Htz1-containing nucleosome was shown to be "fragile," meaning it is ejected from the gene in a regulated manner, allowing reading of the gene’s instructions by the cellular machinery. When the gene returns to its inactive or repressed state, the Htz1 nucleosome is reconstructed, again blocking the machinery from reading the gene.

Cairns, an associate professor in the Department of Oncological Sciences at the University of Utah School of Medicine and an investigator with the Howard Hughes Medical Institute, along with Huntsman Cancer Institute graduate students Haiying Zhang and Douglas N. Roberts, studied yeast cells to make the discovery.

"We and hundreds of other laboratories world-wide use yeast as a model system to study gene expression, as the analytical tools for studying yeast are actually more advanced than those available for human cells. However, all the factors that we study in yeast have virtually identical counterparts in human cells, so we fully expect the discovery to apply in humans as well," Cairns says.

Linda Aagard, | EurekAlert!
Further information:
http://www.hci.utah.edu
http://www.hci.utah.edu/aboutHCI/media/intro.jsp

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>