Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new turn-on for genes

24.10.2005


Scientists find structure relevant to cell growth and cancer



Researchers discovered a special type of molecular structure that helps keep genes properly turned off until the structure is ejected from those genes in a regulated manner to help turn the genes on. The discovery is reported in the Oct. 21 issue of the journal Cell by scientists from the Huntsman Cancer Institute at the University of Utah.

In all organisms, the genome is split into chromosomes (compressed long strands of DNA) which are subdivided into functional DNA segments called genes. Genes function as the blueprints for building particular pieces of cellular machinery. However, different types of cells each require different types of cellular machinery, and must produce that machinery according to a biological timetable. A central issue in molecular biology is finding out how a cell regulates which genes are on, or active, and which genes are off, or repressed. This topic has direct relevance to human disease, as improper activation or repression of genes that regulate cellular growth is a common feature of cancer cells.


"We must understand how genes are activated or repressed in normal cells in order to understand how this process is misregulated in cancer cells," says Brad Cairns, Ph.D., lead scientist on the study and an investigator with Huntsman Cancer Institute. "We are beginning to understand how gene activation and repression is altered in cancer cells, and how that leads to tumor growth. However, the design of targeted treatments that can correct these alterations will require a deep knowledge of the basic cellular mechanisms that regulate gene expression."

The scientists studied a group of proteins known as histones, which form disk-like structures called nucleosomes when they are wrapped by genes. Under an electron microscope, the nucleosomes look like beads strung along the DNA strand. Normal nucleosomes block access to the cellular machinery that reads the blueprint stored in the gene, keeping the gene off or repressed.

Huntsman Cancer Institute investigators discovered that certain genes contain a special type of nucleosome bearing a protein called Htz1. This Htz1-containing nucleosome was shown to be "fragile," meaning it is ejected from the gene in a regulated manner, allowing reading of the gene’s instructions by the cellular machinery. When the gene returns to its inactive or repressed state, the Htz1 nucleosome is reconstructed, again blocking the machinery from reading the gene.

Cairns, an associate professor in the Department of Oncological Sciences at the University of Utah School of Medicine and an investigator with the Howard Hughes Medical Institute, along with Huntsman Cancer Institute graduate students Haiying Zhang and Douglas N. Roberts, studied yeast cells to make the discovery.

"We and hundreds of other laboratories world-wide use yeast as a model system to study gene expression, as the analytical tools for studying yeast are actually more advanced than those available for human cells. However, all the factors that we study in yeast have virtually identical counterparts in human cells, so we fully expect the discovery to apply in humans as well," Cairns says.

Linda Aagard, | EurekAlert!
Further information:
http://www.hci.utah.edu
http://www.hci.utah.edu/aboutHCI/media/intro.jsp

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>