Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells’ electric abilities might help their safe clinical use

21.10.2005


Researchers from Johns Hopkins have discovered the presence of functional ion channels in human embryonic stem cells (ESCs). These ion channels act like electrical wires and permit ESCs, versatile cells that possess the unique ability to become all cell types of the body, to conduct and pass along electric currents.



If researchers could selectively block some of these channels in implanted cells, derived from stem cells, they may be able to prevent potential tumor development. The paper appears Aug. 5 online in the journal Stem Cells.

"A major concern for human ESC-based therapies is the potential for engineered grafts to go haywire after transplantation and form tumors, for instance, due to contamination by only a few undifferentiated human ESCs," says Ronald A. Li, Ph.D., an assistant professor of medicine at The Johns Hopkins University School of Medicine and senior author of the study. "Our discovery of functional ion channels, which are valves in a cell’s outer membrane allowing the passage of charged atoms, the basis of electricity, provides an important link to the differentiation, or maturation, and cell proliferation, or growth of human ESCs."


Because human ESCs can potentially provide an unlimited supply of even highly specialized cells, such as brain and heart cells, for transplantation and cell-based therapies, they may provide an ultimate solution to limited donor availability.

In an earlier study, Li’s lab genetically engineered heart cells derived from human ESCs, suggesting the possibility of transplanting unlimited supplies of healthy, specialized cells into damaged organs.

"We do not want to be taking any chances of tumor formation. Based on our previous research, we therefore decided to explore the existence of ion channels in pluripotent, or versatile, human ESCs because electrical activity is known to regulate cell differentiation and proliferation," says Li. "To my knowledge, the electrical properties of human ESCs were never studied up to this point."

In the current study, the researchers measured the electric currents of single human ESCs, discovered several channels that allow and control passage of potassium, and observed the electric current’s effect on cell differentiation and proliferation.

"In a number of different cell types, from cancer to T-lymphocytes, potassium channels are responsible for altering the membrane voltage of cells," says Li. "This in turn is required for the progression of certain cells into the next phase of a cell cycle."

Li hopes the targeting of specific potassium channels will give scientists more understanding and control in engineering healthy cells for transplantation.

"We found that blocking potassium channels in ESCs also slowed their growth," says Li. "Our findings may lead to genetic strategies that suppress undesirable cell division after transplantation, not only for ESCs and their derivatives, but perhaps for adult stem cells as well." Li adds that much more work is necessary to know for sure.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://stemcells.alphamedpress.org/papbyrecent.dtl

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>