Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale study gives new insight into heat transfer in biological systems

21.10.2005


One of the first things we learn in chemistry class is that solids conduct heat better than liquids. But a new study suggests that in nanoscale materials, this is not necessarily the case.



Using computer simulations, researchers at Rensselaer Polytechnic Institute have found that heat may actually move better across interfaces between liquids than it does between solids. The findings, which were published online Oct. 11 in the journal Nano Letters, provide insights that could prove useful in fields ranging from computer chip manufacturing to cancer treatment.

Conduction is the movement of heat from a warmer substance to a cooler substance, as when a spoon heats up after sitting in a cup of hot soup. "Liquids generally have low thermal conductivity when compared to solids," says Pawel Keblinski, associate professor of materials science and engineering at Rensselaer and coauthor of the paper. "For example, diamond is one of the best conductors around, with a conductivity of about 5,000 times that of water." Metals also tend to be good conductors, which is why the same spoon would normally feel cold to the touch -- it conducts heat away from the hand.


But this conventional wisdom refers only to "bulk" thermal conductivity, which occurs at the macroscale. In nanoscale materials, the conductivity across interfaces plays a major role. "Conductivity at the interface of two materials is controlled by the nature of the interaction between molecules," says Shekhar Garde, associate professor of chemical and biological engineering at Rensselaer and also coauthor of the paper. "Even if the two substances are good conductors, the nature of the interface could affect heat transfer between them."

Garde and Keblinski performed molecular simulations of a variety of interfaces and found that thermal conductivity between liquid interfaces turns out to be surprisingly high.

The findings could have immediate practical application for cancer therapy, according to Keblinski. "Scientists are developing cancer treatments based on nanoparticles that attach to specific tissues, which are then heated to kill the cancerous cells," he says. "It is vital to understand how heat flows in these systems, because too much heat applied in the wrong spot can kill healthy cells."

Garde’s and Keblinski’s research also could be important to the electronics industry, because of the growing interest in nanocomposite materials for computer chips, which generate a great deal of heat. Chip designers are increasingly combining solid surfaces with softer organic materials, and understanding heat flow will be a key aspect of continuing to shrink the dimensions of chip components, the researchers say.

The findings also provide more fundamental insights that are extremely important for understanding any system with nanoscale features, which tend to have huge numbers of interfaces, according to the researchers.

Biological systems are a key example. The surfaces of proteins, DNA, and other biomolecules interact with water to form the very basis of life. In water-based solutions, proteins instinctively fold into unique three-dimensional structures, which do much of the work in the body. Misfolded proteins also are implicated in diseases such as Alzheimer’s and Parkinson’s, and the ability of proteins to function depends on how much they can vibrate in their folded state.

The next step, according to Keblinski and Garde, is to focus on studying heat transfer between proteins and water, which will give them a better understanding of how water governs protein dynamics.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>