Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule crucial for processing non-coding RNA identified

21.10.2005


Long-standing scientific question resolved



The discovery in 1977 that the coding regions of a gene could appear in separate segments along the DNA won the 1993 Nobel Prize in Physiology or Medicine for Richard J. Roberts and Phillip A. Sharp. The active segments of a gene were termed exons, separated from each other within the gene by inactive introns.

The research suggested the necessary existence of a number of biological processes and active entities, many of which have since been tracked down by other scientists. Some, however, have resisted intensive inquiry. Now, researchers at The Wistar Institute and colleagues have resolved one of the important biological questions to which this earlier research pointed. A report on their findings appears in the October 21 issue of Cell.


Researchers who followed Roberts and Sharp discovered a molecular machine called a spliceosome, which was responsible for processing messenger RNA, or mRNA, the gene transcript from which proteins are produced. The spliceosome does this by snipping out the introns from the mRNA and then stitching together the exons into the finished mRNA. The activity takes place in the nucleus of the cell.

The spliceosome itself is composed of proteins and so-called small nuclear RNAs, or snRNAs. These snRNAs, as is the case with other forms of non-coding RNA in the nucleus, never produce proteins but play important roles in facilitating and regulating genetic activity. How these snRNAs were processed, however, remained a mystery for over twenty years. And because the spliceosome underlies the successful transcription of every single gene in the body, the question has been a vital one to answer.

In the new study, the Wistar-led research team identifies an entirely novel multi-protein complex called the Integrator that plays a central role in the processing of snRNAs. The Integrator appears to perform two important duties simultaneously. It binds a molecule called CTD, which is a component of the polymerase enzyme that transcribes snRNA genes, and it also binds to the specific genes that code for the snRNAs. With CTD as a platform, the Integrator forms a bridge between the genes and the polymerase components that transcribe them. Then, as the polymerase transcribes the genes into RNA, the Integrator processes the RNA into finished snRNAs ready for transport into the cytoplasm and incorporation into the spliceosome.

Interestingly, the Integrator contains at least 12 subunits, all of which were previously unknown to scientists. The Integrator also appears to be an evolutionarily conserved complex, appearing in animals as diverse as humans, worms, and flies.

"The Integrator complex appears to be completely new, previously undefined in any way, which is surprising in this era of the Human Genome Project," says Ramin Shiekhattar, Ph.D., a professor at Wistar and senior author on the Cell study. "People had hypothesized that a complex of this kind must exist and had looked for it for many years, but until now it had eluded them."

The lead author on the Cell study is David Baillat, Ph.D. Mohamed-Ali Hakimi, Anders M. Naar, Ali Shilatifard, and Neil Cooch are coauthors. Baillat and Cooch are both members of the Shiekhattar laboratory at Wistar. Hakimi is at the CNRS in France, Naar is affiliated with Harvard Medical School and the Massachusetts General Hospital Cancer Center, and Shilatifard is at the St. Louis University Health Sciences Center. Senior author Shiekhattar is a professor in two programs at Wistar, the Gene Expression and Regulation program and the Molecular and Cellular Oncogenesis program. Support for the research was provided by the National Institutes of Health.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>