Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule crucial for processing non-coding RNA identified

21.10.2005


Long-standing scientific question resolved



The discovery in 1977 that the coding regions of a gene could appear in separate segments along the DNA won the 1993 Nobel Prize in Physiology or Medicine for Richard J. Roberts and Phillip A. Sharp. The active segments of a gene were termed exons, separated from each other within the gene by inactive introns.

The research suggested the necessary existence of a number of biological processes and active entities, many of which have since been tracked down by other scientists. Some, however, have resisted intensive inquiry. Now, researchers at The Wistar Institute and colleagues have resolved one of the important biological questions to which this earlier research pointed. A report on their findings appears in the October 21 issue of Cell.


Researchers who followed Roberts and Sharp discovered a molecular machine called a spliceosome, which was responsible for processing messenger RNA, or mRNA, the gene transcript from which proteins are produced. The spliceosome does this by snipping out the introns from the mRNA and then stitching together the exons into the finished mRNA. The activity takes place in the nucleus of the cell.

The spliceosome itself is composed of proteins and so-called small nuclear RNAs, or snRNAs. These snRNAs, as is the case with other forms of non-coding RNA in the nucleus, never produce proteins but play important roles in facilitating and regulating genetic activity. How these snRNAs were processed, however, remained a mystery for over twenty years. And because the spliceosome underlies the successful transcription of every single gene in the body, the question has been a vital one to answer.

In the new study, the Wistar-led research team identifies an entirely novel multi-protein complex called the Integrator that plays a central role in the processing of snRNAs. The Integrator appears to perform two important duties simultaneously. It binds a molecule called CTD, which is a component of the polymerase enzyme that transcribes snRNA genes, and it also binds to the specific genes that code for the snRNAs. With CTD as a platform, the Integrator forms a bridge between the genes and the polymerase components that transcribe them. Then, as the polymerase transcribes the genes into RNA, the Integrator processes the RNA into finished snRNAs ready for transport into the cytoplasm and incorporation into the spliceosome.

Interestingly, the Integrator contains at least 12 subunits, all of which were previously unknown to scientists. The Integrator also appears to be an evolutionarily conserved complex, appearing in animals as diverse as humans, worms, and flies.

"The Integrator complex appears to be completely new, previously undefined in any way, which is surprising in this era of the Human Genome Project," says Ramin Shiekhattar, Ph.D., a professor at Wistar and senior author on the Cell study. "People had hypothesized that a complex of this kind must exist and had looked for it for many years, but until now it had eluded them."

The lead author on the Cell study is David Baillat, Ph.D. Mohamed-Ali Hakimi, Anders M. Naar, Ali Shilatifard, and Neil Cooch are coauthors. Baillat and Cooch are both members of the Shiekhattar laboratory at Wistar. Hakimi is at the CNRS in France, Naar is affiliated with Harvard Medical School and the Massachusetts General Hospital Cancer Center, and Shilatifard is at the St. Louis University Health Sciences Center. Senior author Shiekhattar is a professor in two programs at Wistar, the Gene Expression and Regulation program and the Molecular and Cellular Oncogenesis program. Support for the research was provided by the National Institutes of Health.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>