Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule crucial for processing non-coding RNA identified

21.10.2005


Long-standing scientific question resolved



The discovery in 1977 that the coding regions of a gene could appear in separate segments along the DNA won the 1993 Nobel Prize in Physiology or Medicine for Richard J. Roberts and Phillip A. Sharp. The active segments of a gene were termed exons, separated from each other within the gene by inactive introns.

The research suggested the necessary existence of a number of biological processes and active entities, many of which have since been tracked down by other scientists. Some, however, have resisted intensive inquiry. Now, researchers at The Wistar Institute and colleagues have resolved one of the important biological questions to which this earlier research pointed. A report on their findings appears in the October 21 issue of Cell.


Researchers who followed Roberts and Sharp discovered a molecular machine called a spliceosome, which was responsible for processing messenger RNA, or mRNA, the gene transcript from which proteins are produced. The spliceosome does this by snipping out the introns from the mRNA and then stitching together the exons into the finished mRNA. The activity takes place in the nucleus of the cell.

The spliceosome itself is composed of proteins and so-called small nuclear RNAs, or snRNAs. These snRNAs, as is the case with other forms of non-coding RNA in the nucleus, never produce proteins but play important roles in facilitating and regulating genetic activity. How these snRNAs were processed, however, remained a mystery for over twenty years. And because the spliceosome underlies the successful transcription of every single gene in the body, the question has been a vital one to answer.

In the new study, the Wistar-led research team identifies an entirely novel multi-protein complex called the Integrator that plays a central role in the processing of snRNAs. The Integrator appears to perform two important duties simultaneously. It binds a molecule called CTD, which is a component of the polymerase enzyme that transcribes snRNA genes, and it also binds to the specific genes that code for the snRNAs. With CTD as a platform, the Integrator forms a bridge between the genes and the polymerase components that transcribe them. Then, as the polymerase transcribes the genes into RNA, the Integrator processes the RNA into finished snRNAs ready for transport into the cytoplasm and incorporation into the spliceosome.

Interestingly, the Integrator contains at least 12 subunits, all of which were previously unknown to scientists. The Integrator also appears to be an evolutionarily conserved complex, appearing in animals as diverse as humans, worms, and flies.

"The Integrator complex appears to be completely new, previously undefined in any way, which is surprising in this era of the Human Genome Project," says Ramin Shiekhattar, Ph.D., a professor at Wistar and senior author on the Cell study. "People had hypothesized that a complex of this kind must exist and had looked for it for many years, but until now it had eluded them."

The lead author on the Cell study is David Baillat, Ph.D. Mohamed-Ali Hakimi, Anders M. Naar, Ali Shilatifard, and Neil Cooch are coauthors. Baillat and Cooch are both members of the Shiekhattar laboratory at Wistar. Hakimi is at the CNRS in France, Naar is affiliated with Harvard Medical School and the Massachusetts General Hospital Cancer Center, and Shilatifard is at the St. Louis University Health Sciences Center. Senior author Shiekhattar is a professor in two programs at Wistar, the Gene Expression and Regulation program and the Molecular and Cellular Oncogenesis program. Support for the research was provided by the National Institutes of Health.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>