Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene regulation mechanism discovered

21.10.2005


Messenger RNA ’cut and run’ scheme provides rapid stress response




Researchers at Cold Spring Harbor Laboratory have discovered a new kind of messenger RNA molecule that is converted from non-protein coding status to protein coding status in response to cellular stress such as viral infection. The discovery reveals a "cut and run" mechanism that is likely to control the expression of many genes in humans and a variety of other organisms. A deeper understanding of this mechanism is predicted to have broad implications for biology and biomedical research.

The central dogma of molecular biology holds that the DNA of genes is "transcribed" into messenger RNA and messenger RNA is "translated" into protein. The regulation of transcription and translation ultimately determines whether particular genes are switched on to produce protein, or switched off. Once they are made, most messenger RNA molecules are exported from the cell nucleus to the cytoplasm and are then used in the cytoplasm as templates for the production of protein.


However, a few years ago, Cold Spring Harbor Laboratory scientists led by Dr. David Spector noticed that under standard growth conditions, a particular population of messenger RNA molecules lingered in the nucleus indefinitely--in structures they call "nuclear speckles"--and never reached the cytoplasm.

"We thought that these messenger RNAs must be doing something interesting by hanging around in the nucleus, but at the time we didn’t have a way of finding out what that might be," says Spector. "Why would they be produced if they would never be used?"

Then one of Spector’s graduate students developed a method for purifying speckles. That allowed the researchers to identify not only the many different protein components of speckles, but also the messenger RNAs that are the basis of the new study, published in the October 21 issue of the journal Cell. The study--spearheaded by Cold Spring Harbor Laboratory postdoctoral fellow Dr. Kannanganattu Prasanth--identified the first such messenger RNA: one transcribed from a mouse gene called mCAT2 that encodes a cell surface receptor.

"The first clue came when we found that the mCAT2 gene encodes two different kinds of messenger RNAs; the standard protein coding version that’s exported to the cytoplasm as usual, and an atypical version that remains in the nucleus," says Spector. "But the big clue came when we thought about what the mCAT2 receptor does and why the mCAT2 gene would encode a messenger RNA that stays in the nucleus."

The scientists learned from the work of others that the mCAT2 receptor is involved in the production of nitric oxide, and that nitric oxide production is stimulated by various stress conditions including wound healing and viral infection.

"That told us that when cells are stressed, maybe the atypical messenger RNA is released from the nucleus, exported to the cytoplasm, and translated into protein, thus circumventing the time-consuming process of producing new messenger RNA and providing a rapid response to viral infection or other stresses," says Spector. To test this idea, the researchers mimicked the effect of viral infection by treating cells with interferon.

Sure enough, they discovered that the atypical mCAT2 messenger RNA in the nucleus was rapidly cleaved in response to interferon treatment, and that the protein coding portion of the molecule was then quickly exported to the cytoplasm and translated into protein (ILLUSTRATION AVAILABLE ON REQUEST).

"This ’cut and run’ mechanism is a completely new paradigm of gene regulation, so studying it will keep us busy for a while. But we already suspect that there is going to be a large family of genes regulated in this way," says Spector.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>