Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene regulation mechanism discovered

21.10.2005


Messenger RNA ’cut and run’ scheme provides rapid stress response




Researchers at Cold Spring Harbor Laboratory have discovered a new kind of messenger RNA molecule that is converted from non-protein coding status to protein coding status in response to cellular stress such as viral infection. The discovery reveals a "cut and run" mechanism that is likely to control the expression of many genes in humans and a variety of other organisms. A deeper understanding of this mechanism is predicted to have broad implications for biology and biomedical research.

The central dogma of molecular biology holds that the DNA of genes is "transcribed" into messenger RNA and messenger RNA is "translated" into protein. The regulation of transcription and translation ultimately determines whether particular genes are switched on to produce protein, or switched off. Once they are made, most messenger RNA molecules are exported from the cell nucleus to the cytoplasm and are then used in the cytoplasm as templates for the production of protein.


However, a few years ago, Cold Spring Harbor Laboratory scientists led by Dr. David Spector noticed that under standard growth conditions, a particular population of messenger RNA molecules lingered in the nucleus indefinitely--in structures they call "nuclear speckles"--and never reached the cytoplasm.

"We thought that these messenger RNAs must be doing something interesting by hanging around in the nucleus, but at the time we didn’t have a way of finding out what that might be," says Spector. "Why would they be produced if they would never be used?"

Then one of Spector’s graduate students developed a method for purifying speckles. That allowed the researchers to identify not only the many different protein components of speckles, but also the messenger RNAs that are the basis of the new study, published in the October 21 issue of the journal Cell. The study--spearheaded by Cold Spring Harbor Laboratory postdoctoral fellow Dr. Kannanganattu Prasanth--identified the first such messenger RNA: one transcribed from a mouse gene called mCAT2 that encodes a cell surface receptor.

"The first clue came when we found that the mCAT2 gene encodes two different kinds of messenger RNAs; the standard protein coding version that’s exported to the cytoplasm as usual, and an atypical version that remains in the nucleus," says Spector. "But the big clue came when we thought about what the mCAT2 receptor does and why the mCAT2 gene would encode a messenger RNA that stays in the nucleus."

The scientists learned from the work of others that the mCAT2 receptor is involved in the production of nitric oxide, and that nitric oxide production is stimulated by various stress conditions including wound healing and viral infection.

"That told us that when cells are stressed, maybe the atypical messenger RNA is released from the nucleus, exported to the cytoplasm, and translated into protein, thus circumventing the time-consuming process of producing new messenger RNA and providing a rapid response to viral infection or other stresses," says Spector. To test this idea, the researchers mimicked the effect of viral infection by treating cells with interferon.

Sure enough, they discovered that the atypical mCAT2 messenger RNA in the nucleus was rapidly cleaved in response to interferon treatment, and that the protein coding portion of the molecule was then quickly exported to the cytoplasm and translated into protein (ILLUSTRATION AVAILABLE ON REQUEST).

"This ’cut and run’ mechanism is a completely new paradigm of gene regulation, so studying it will keep us busy for a while. But we already suspect that there is going to be a large family of genes regulated in this way," says Spector.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>