Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Based on Body Size, Bacteria and Elephants Have Similar Metabolism, Ecologists Find


UCR-led research team shows that organisms use their biochemical characteristics to overcome limitations arising from their body size

Life scientists have long maintained that, based on body size, small organisms are more metabolically active than large organisms. But a new study led by Bai-Lian Li, professor of ecology at UC Riverside, shows that this is true only for organisms that are closely related evolutionarily and have body masses differing by no more than 6-7 orders of magnitude – about the difference in body mass between an elephant and a shrew.

For a pair of organisms that don’t meet these conditions, that is, organisms that are not closely related evolutionarily and whose body mass difference exceeds the 6-7 orders of magnitude range, the researchers find that the small organism consumes about the same amount of energy per unit mass as the large organism: 1-10 watts per kilogram of body mass in the resting state of the organisms.

In other words, while metabolic activity per unit body mass varies within a group of organisms, such as mammals, it tends not to vary much when two diverse groups of organisms that differ greatly from each other in size are compared – such as bacteria and mammals. “Our findings indicate there is a universal rate of energy supply per unit mass which can maintain life in organisms regardless of size,” Li said. “Living matter appears to be able to function at its own optimum rhythm, overriding various limitations imposed by the evolutionary increase in body size.”

Results from the study appear in the Oct. 22 issue of the Proceedings of the Royal Society: Biological Sciences.

The study is the first to compare bacterial metabolism with that of larger organisms, and the first to cover very diverse groups of organisms – from unicellular and multicellular organisms to plant leaves, insects and mammals.

Li explained that all living organisms have to transport energy obtained from food they eat to support the working of their internal organs, such as the brain or heart. The larger the organism, the further away are the organs from the body surface. “This makes energy supply more and more difficult for larger organisms,” he said. “For example, bacteria have to transport the obtained food over less than one micron, which is their body length, while the distance between an elephant’s trunk and an organ such as its brain or heart is about ten million times longer. Despite this physical limitation of large size, elephants, we found, appear to be capable of supplying their tissues at a rate similar to that of tiny bacteria.”

So far, life scientists have held the view that the properties of living organisms are shaped by the changing external physical environment to which the organisms must continuously adapt. The new study posits, however, that living organisms are able to overcome the physical limitations imposed on them by their own physical properties and their external environment in order to maintain optimal, biochemical characteristics, such as the mass-specific metabolic rate the researchers studied.

The researchers’ analysis also shows that the rate of energy consumption per unit body mass declines with growing body size in groups of evolutionarily close organisms, such as mammals. For example, one gram of an elephant’s body uses up 25 times less energy than does one gram of a shrew’s body, accounting for why shrews have to eat more often than elephants. On the other hand, a bacterium, which is not closely related to an elephant in an evolutionary sense, consumes approximately the same energy per unit body mass as the elephant.

The researchers analyzed a total of 80 bacteria species and conducted work at UCR and St. Petersburg, Russia. Anastassia M. Makarieva of UCR and the Russian Academy of Sciences; and Victor G. Gorshkov of the Russian Academy of Sciences collaborated on the study. The U.S. National Science Foundation and Russian Basic Science Fund provided support.

Iqbal Pittalwala | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>