Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech cotton 8: Bugs 0

20.10.2005


Biotech cotton has beaten back pink bollworm eight years running, reports a team of scientists from The University of Arizona in Tucson.


A cotton boll with a pink boll caterpillar inside. Photo credit: Timothy Dennehy


Cotton fields in Parker Valley, Ariz. Bt cotton is the greener field in the foreground. The whiter swath of cotton in the background is a refuge field of non-Bt cotton. Photo credit: Timothy Dennehy.



The surprising finding is good news for the environment. Arizona farmers who plant the biotech cotton known as Bt cotton use substantially less chemical insecticides than in the past.

Insect pests sometimes evolve resistance to such chemicals in just a few years, a fate that was predicted for biotech crops genetically altered to produce Bt toxin, a naturally occurring insecticide.


"This is the most complete study to date for monitoring resistance to Bt crops," said team leader Bruce E. Tabashnik, the head of UA’s department of entomology, a member of UA’s BIO5 Institute and an expert in insect resistance to insecticides.

"We found no net increase in insect resistance to Bt. If anything, resistance decreased. This is the opposite of what experts predicted when these crops were first commercialized." He added, "I’m definitely surprised."

Tabashnik, Timothy J. Dennehy, a UA Distinguished University Outreach Professor of Entomology and extension specialist and a member of BIO5, and Yves Carriere, UA associate professor of entomology, will publish their research in an upcoming issue of the Proceedings of the National Academy of Sciences.

Bt cotton has been planted in Arizona since 1996. Now more than half of the state’s 256,000 acres of cotton fields are planted with the biotech plants. Without the protection provided by Bt cotton, some fields can have 100 percent of plants infested with pink bollworm caterpillars, which live inside the cotton boll, destroying the crop.

Dennehy said, "In an extreme infestation, you can have every single boll in the field infected." The caterpillars eat the seeds and damage the developing cotton fibers.

In contrast, when the caterpillars eat Bt cotton, they die.

Before the use of Bt cotton became widespread, pink bollworm was one of the top three insect pests of cotton in the Southwest. In 1995, losses from pink bollworm in Arizona cotton were estimated to be $8.48 per acre, totaling $3.4 million statewide. Cotton is grown in eight Arizona counties: Cochise, Graham, La Paz, Maricopa, Mohave, Pima, Pinal and Yuma.

"Moreover, the harsh insecticides used to control pink bollworm resulted in a host of other insect pests becoming more serious problems," Dennehy said.

Everything changed in 1996, he said, when Bt cotton and two other "soft" insect control tactics replaced a large amount of the harsh pesticides used on cotton crops. Spraying less chemical insecticides means more beneficial insects survive, further reducing the need for spraying.

By 2004, pink bollworm losses had fallen to nearly half of earlier levels, $4.34 per acre.

Tabashnik said, "Some of the other pests are not so much of a problem because we’re not killing their natural enemies with insecticides."

Dennehy added, "These soft toxins plus the good bugs acting together have driven pesticide use to historic low levels ... this is a wonderful success of integrated pest management."

Since widespread adoption of Bt cotton in 1997, insecticide use on Arizona’s cotton crops is down 60 percent, said Tabashnik. The reduction in chemical pesticide use saves growers about $80 per acre. According to the Arizona Agricultural Statistics Bulletin, the value of Arizona’s cotton crops for 2004 was estimated at $207 million.

The key to Bt cotton’s continued efficacy is the use of refuges – patches of traditional cotton intermingled with the fields of Bt cotton.

The refuges ensure that the few pink bollworm moths that are resistant to Bt are most likely to mate with Bt-susceptible pink bollworm moths that grew up in the refuges. The offspring from such matings die when they eat Bt cotton.

In contrast, if all of Arizona’s cotton was Bt cotton, only pink bollworm caterpillars that were resistant to the Bt toxin would survive. If resistant pink bollworm moths mated with each other, their offspring would be resistant and could feed on Bt cotton. Bt cotton would then become useless against pink bollworm.

The UA team used a combination of field surveys, laboratory testing and mathematical modeling to determine if pink bollworm had become resistant to Bt cotton.

The team did find Bt-resistant pink bollworm caterpillars in the field, but they were rare.

Tabashnik said that doesn’t mean the insects won’t bite back in the future. "It’s not that pink bollworm can’t beat Bt toxin, but that it hasn’t beaten Bt toxin so far."

There’s a new variety Bt cotton now available that has two different Bt toxins, he said. The team’s next step will be to determine how to best use that combination of toxins to stay one step ahead of the pink bollworms.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu
http://bio5.org/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>