Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When do mosquitoes prefer a blood banquet, or a sugar feast? Three genes make the call

20.10.2005


Entomologists have isolated three key genes that determine when female mosquitoes feed on blood and when they decide to switch to an all-sugar diet to fatten up for the winter.



David Denlinger, professor of entomology at Ohio State University, hopes this discovery will lead scientists to other genes that help the mosquitoes survive cold weather – in particular, those genes related to how insects handle the West Nile Virus when they enter a kind of hibernation.

Denlinger and Rebecca Robich, a former doctoral student at Ohio State and now a research fellow at the Harvard School of Public Health, published their findings in the online edition of the Proceedings of the National Academy of Sciences.


Only female mosquitoes draw blood, and only females survive the winter. Proteins in the blood they suck from humans and other animals enable the mosquitoes to produce eggs, and the sugars – which they eat in the form of rotting fruit or nectar – let them double their weight in fat so they can survive without food until the next spring.

Though researchers have long known about this diet change, this is the first time anyone has determined exactly why it happens. As the days begin to get shorter, two genes that code for digesting blood switch off, and a different gene for digesting sugar and retaining fat switches on.

“Normally mosquitoes are out taking blood from you and me, but when they’re programmed to begin this hibernation phase we call diapause, the blood response shuts down. They can’t tolerate a blood meal at that time. They switch completely to sugar, so that’s a pretty dramatic metabolic shift,” Denlinger said. “Then they spend the winter in culverts and caves, and basements of houses.”

These three genes are the first big discovery to come out of Denlinger’s relatively new mosquito research program; his students ventured into the Columbus city sewers in September of 2000, to collect larvae of a local variety of Culex pipiens – a mosquito known to carry the West Nile Virus – and established a colony of this “Buckeye strain” in the lab.

They reared the colony with 15 hours of light a day. Then they made half of the adult females enter diapause by switching them to nine hours of light a day to mimic early autumn conditions.

Denlinger and Robich compared the genes expressed in the normal females to the ones that had entered diapause. After only a few days in short-light conditions, the mosquitoes that had entered diapause stopped expressing two genes for blood digestion, and started expressing one for sugar digestion and fat retention.

“We are just beginning to understand the genes that regulate diapause,” Denlinger said. “There are other genes that we are looking at, and we want to find the ones that signal the switch from one state to another. The genes for these digestive enzymes provide a kind of marker, so you can detect whether an insect is in diapause, but I think other genes are the ones that cause diapause to begin.”

Understanding these genes is important, he said, because scientists suspect that mosquitoes have some genetic trick for controlling the West Nile Virus when they enter diapause.

“There are suggestions that the virus survives through the winter, inside the bodies of these females,” he said. “When the mosquito goes dormant, we think something in its body causes the virus to go dormant, too. The virus stops replicating, then starts replicating again in the spring when the mosquito leaves dormancy.”

Whether scientists could use this information to manipulate mosquito populations to control the spread of West Nile will take years to find out, he added.

David Denlinger | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>