Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Your brain cells may ’know’ more than you let on by your behavior


We often make unwise choices although we should know better. Thunderstorm clouds ominously darken the horizon. We nonetheless go out without an umbrella because we are distracted and forget. But do we? Neurobiologists at the Salk Institute for Biological Studies carried out experiments that prove for the first time that the brain remembers, even if we don’t and the umbrella stays behind. They report their findings in the Oct. 20th issue of Neuron.

"For the first time, we can a look at the brain activity of a rhesus monkey and infer what the animal knows," says lead investigator Thomas D. Albright, director of the Vision Center Laboratory.

First author Adam Messinger, a former graduate student in Albright’s lab and now a post-doctoral researcher at the National Institute of Mental Health in Bethesda, Md. compares it to subliminal knowledge. It is there, even if doesn’t enter our consciousness.

"You know you’ve met the wife of your work colleague but you can’t recall her face," he gives as an example.

Human memory relies mostly on association; when we try to retrieve information, one thing reminds us of another, which reminds us of yet another, and so on. Naturally, neurobiologists are putting a lot of effort into trying to understand how associative memory works.

One way to study associative memory is to train rhesus monkeys to remember arbitrary pairs of symbols. After being shown the first symbol (i.e. dark clouds) they are presented with two symbols, from which they have to pick the one that has been associated with the initial cue (i.e. umbrella). The reward is a sip of their favorite fruit juice.

"We want the monkeys to behave perfectly on these tests, but one of them made a lot of errors," recalls Albright. "We wondered what happened in the brain when the monkeys made the wrong choice, although they had apparently learned the right pairing of the symbols."

So, while the monkeys tried to remember the associations and made their error-prone choices, the scientists observed signals from the nerve cells in a special area of the brain called the "inferior temporal cortex" (ITC). This area is known to be critical for visual pattern recognition and for storage of this type of memory.

When Albright and his team analyzed the activity patterns of brain cells in the ITC, they could trace about a quarter of the activity to the monkey’s behavioral choice. But more than 50 percent of active nerve cells belonged to a novel class of nerve cells or neurons, which the researchers believe represents the memory of the correct pairing of cue and associated symbol. Surprisingly, these brain cells kept firing even when the monkeys picked the wrong symbol.

"In this sense, the cells ’knew’ more than the monkeys let on in their behavior," says Albright.

And although behavioral performance is generally accepted to reliably reflect knowledge, in fact, behavior is heavily influenced – in the laboratory and in the real world – by other factors, such as motivation, attention and environmental distractions.

"Thus behavior may vary, but knowledge endures," concluded Albright, Messinger and their co-authors in their Neuron paper. The other co-authors are Larry R. Squire, a professor in the Department of Psychiatry at the UCSD School of Medicine, and Stuart M. Zola, director of the Yerkes National Primate Research Center in Atlanta.

Cathy Yarbrough | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>