Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fatty acid found in milk may help control inflammatory diseases

19.10.2005


One of the isomers of conjugated linoleic acid, a group of fatty acids found in milk, is a natural regulator of the COX-2 protein, which plays a significant role in inflammatory disease such as arthritis and cancer, according to a study published by University of Wisconsin-Madison researchers.



"It’s clear from previous research that conjugated linoleic acid, or CLA, prevents inflammatory damage resulting from immune response," says Mark Cook, a professor of animal science in UW-Madison’s College of Agricultural and Life Sciences. "We’ve identified the biochemical mechanism by which this occurs."

CLA, which is synthesized by microbial fermentation in the rumen of dairy cows, exists naturally in a number of structural forms. Cook’s team determined that one of the variants inhibits the COX-2 protein by blocking a key cellular pathway. The COX-2 protein is known to play a significant role in many inflammatory diseases and is an important drug target for treating arthritis and cancer, Cook says.


While the amount of the anti-inflammatory isomer of CLA in milk is small relative to other fatty acids in milk, there may still be enough to elicit an effect if someone consumes dairy products every day, says Cook. He is planning a study, in collaboration with researchers in the dairy science and food science departments, to determine whether the amount of anti-inflammatory CLA in milk can be increased by changing dairy cow diets.

A poultry scientist, Cook’s interest in CLA arose when he began to investigate what seemed at first to be a simple question: Why does a chick or any other animal raised in a germ-free environment grow faster than one raised in a conventional environment?

"In animal agriculture, you can see as much as a five to ten percent difference in weight at a given age in a growing animal because a secondary effect of immune response is that it suppresses growth," Cook says. The immune system protects the body by fighting disease, but the defense comes at a price, Cook says, including inflammation, muscle wasting and loss of appetite.

"Conventional wisdom dictates that you can increase growth by treating the animal with antibiotics to kill bacteria and avoid activating the immune defense system, but this raises long-term concerns about developing antibiotic resistance," he adds. "You can also suppress the animal’s immune system, but that makes it much more susceptible to disease."

However, Cook is interested in another approach: Using CLA as a natural way to prevent "collateral damage" from the immune system’s response to invading pathogens. "The ideal solution is to let the immune system fight bacteria, but at the same time to maintain the overall health of the system," he says.

Cook is one of many UW-Madison researchers who are interested in the health benefits of CLA. Others include Michael Pariza, director of the Food Research Institute and chair of the food microbiology and toxicology department; James Ntambi of the biochemistry department; and Dale Schoeller of the nutritional sciences department.

His collaborators on the recent study include Guangming Li, a postdoctoral fellow in animal sciences; David Barnes, a former assistant professor of animal sciences; Daniel Butz, a former research associate in nutritional sciences; and Dale Bjorling, a professor of surgical sciences.

Mark Cook | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>