Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fatty acid found in milk may help control inflammatory diseases

19.10.2005


One of the isomers of conjugated linoleic acid, a group of fatty acids found in milk, is a natural regulator of the COX-2 protein, which plays a significant role in inflammatory disease such as arthritis and cancer, according to a study published by University of Wisconsin-Madison researchers.



"It’s clear from previous research that conjugated linoleic acid, or CLA, prevents inflammatory damage resulting from immune response," says Mark Cook, a professor of animal science in UW-Madison’s College of Agricultural and Life Sciences. "We’ve identified the biochemical mechanism by which this occurs."

CLA, which is synthesized by microbial fermentation in the rumen of dairy cows, exists naturally in a number of structural forms. Cook’s team determined that one of the variants inhibits the COX-2 protein by blocking a key cellular pathway. The COX-2 protein is known to play a significant role in many inflammatory diseases and is an important drug target for treating arthritis and cancer, Cook says.


While the amount of the anti-inflammatory isomer of CLA in milk is small relative to other fatty acids in milk, there may still be enough to elicit an effect if someone consumes dairy products every day, says Cook. He is planning a study, in collaboration with researchers in the dairy science and food science departments, to determine whether the amount of anti-inflammatory CLA in milk can be increased by changing dairy cow diets.

A poultry scientist, Cook’s interest in CLA arose when he began to investigate what seemed at first to be a simple question: Why does a chick or any other animal raised in a germ-free environment grow faster than one raised in a conventional environment?

"In animal agriculture, you can see as much as a five to ten percent difference in weight at a given age in a growing animal because a secondary effect of immune response is that it suppresses growth," Cook says. The immune system protects the body by fighting disease, but the defense comes at a price, Cook says, including inflammation, muscle wasting and loss of appetite.

"Conventional wisdom dictates that you can increase growth by treating the animal with antibiotics to kill bacteria and avoid activating the immune defense system, but this raises long-term concerns about developing antibiotic resistance," he adds. "You can also suppress the animal’s immune system, but that makes it much more susceptible to disease."

However, Cook is interested in another approach: Using CLA as a natural way to prevent "collateral damage" from the immune system’s response to invading pathogens. "The ideal solution is to let the immune system fight bacteria, but at the same time to maintain the overall health of the system," he says.

Cook is one of many UW-Madison researchers who are interested in the health benefits of CLA. Others include Michael Pariza, director of the Food Research Institute and chair of the food microbiology and toxicology department; James Ntambi of the biochemistry department; and Dale Schoeller of the nutritional sciences department.

His collaborators on the recent study include Guangming Li, a postdoctoral fellow in animal sciences; David Barnes, a former assistant professor of animal sciences; Daniel Butz, a former research associate in nutritional sciences; and Dale Bjorling, a professor of surgical sciences.

Mark Cook | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>