Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RSRF-Funded Research Yields Novel Function for Rett Syndrome Gene

19.10.2005


Huda Zoghbi, of Baylor College of Medicine and the Howard Hughes Medical Institute and Juan Young, also of Baylor and colleagues report in the online Early Edition of the Proceedings of the National Academy of Science, posted the week of October 17, 2005, that the Rett Syndrome gene, MECP2, regulates RNA splicing. This work was funded in part by the Rett Syndrome Research Foundation (RSRF).



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

RTT is caused by mutations in a gene (MECP2) that regulates expression of other genes. Genes are made up of long stretches of nucleotide bases that are divided into exons (sequences that code for protein) and introns (non-coding sequences). Genes make proteins in a multi-step process. The first, called transcription, takes place in the cell nucleus where DNA is copied into RNA. The second step involves cutting out the introns and pasting together the exons to make up the mature RNA. This RNA is then translated into proteins.


There is a wealth of data to suggest that MECP2 is a transcriptional repressor, meaning it turns off or down-regulates the production of other proteins by shutting down transcription. To date, a handful of MECP2 target genes have been identified.

The paradigm of one gene to one protein has recently given way to the realization that genes encode multiple proteins through a process called alternative splicing, whereby different combinations of exons are pasted together. Furthermore, genes can also have multiple functions. This phenomenon helps to explain why humans are so much more complex than worms or fruit flies, despite having similar numbers of genes.

Zoghbi and colleagues discovered that the MeCP2 protein is multifunctional. Beyond its role as a transcriptional repressor it also acts as a splicing regulator. In support of this finding Zoghbi and colleagues observed alternative splicing abnormalities in the mutant mouse model for RTT.

"The finding that MeCP2 functions in two steps of RNA processing, regulation of RNA levels and regulation of the variant molecules that can be generated from these RNAs is quite exciting. RNA splicing occurs extensively in the nervous system and is critical for many key neuronal functions. MeCP2’s role in this process might provide insight about RNA molecules whose altered splicing contributes to the diverse features of RTT and related disorders," stated Huda Zoghbi. "Once we discover the RNA changes responsible for various features of RTT, we can begin to explore pharmacologic targets to alleviate the symptoms of the disease."

"There was never a doubt that RTT is a complex disease. However, we now propose that its molecular etiology is also complex: MECP2, the gene mutated in RTT, encodes a protein involved in controlling not only the quantity, but also the quality of the protein repertoire of the cell. Thus, we believe that our findings should modify the framework for the identification of key players in RTT pathogenesis by adding mis-spliced genes to the challenge," said Juan Young, first author of the paper.

Since its inception in late 1999, RSRF has become the largest private source of funds for RTT research in the world. "Mutations in the MECP2 gene can lead not only to RTT but also to autism and a variety of other mental disorders. This newly discovered role of MECP2 might therefore hold broad implications for understanding these devastating disorders and point to much needed treatments," stated Monica Coenraads, co-founder and Director of Research for RSRF.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>