Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RSRF-Funded Research Yields Novel Function for Rett Syndrome Gene

19.10.2005


Huda Zoghbi, of Baylor College of Medicine and the Howard Hughes Medical Institute and Juan Young, also of Baylor and colleagues report in the online Early Edition of the Proceedings of the National Academy of Science, posted the week of October 17, 2005, that the Rett Syndrome gene, MECP2, regulates RNA splicing. This work was funded in part by the Rett Syndrome Research Foundation (RSRF).



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

RTT is caused by mutations in a gene (MECP2) that regulates expression of other genes. Genes are made up of long stretches of nucleotide bases that are divided into exons (sequences that code for protein) and introns (non-coding sequences). Genes make proteins in a multi-step process. The first, called transcription, takes place in the cell nucleus where DNA is copied into RNA. The second step involves cutting out the introns and pasting together the exons to make up the mature RNA. This RNA is then translated into proteins.


There is a wealth of data to suggest that MECP2 is a transcriptional repressor, meaning it turns off or down-regulates the production of other proteins by shutting down transcription. To date, a handful of MECP2 target genes have been identified.

The paradigm of one gene to one protein has recently given way to the realization that genes encode multiple proteins through a process called alternative splicing, whereby different combinations of exons are pasted together. Furthermore, genes can also have multiple functions. This phenomenon helps to explain why humans are so much more complex than worms or fruit flies, despite having similar numbers of genes.

Zoghbi and colleagues discovered that the MeCP2 protein is multifunctional. Beyond its role as a transcriptional repressor it also acts as a splicing regulator. In support of this finding Zoghbi and colleagues observed alternative splicing abnormalities in the mutant mouse model for RTT.

"The finding that MeCP2 functions in two steps of RNA processing, regulation of RNA levels and regulation of the variant molecules that can be generated from these RNAs is quite exciting. RNA splicing occurs extensively in the nervous system and is critical for many key neuronal functions. MeCP2’s role in this process might provide insight about RNA molecules whose altered splicing contributes to the diverse features of RTT and related disorders," stated Huda Zoghbi. "Once we discover the RNA changes responsible for various features of RTT, we can begin to explore pharmacologic targets to alleviate the symptoms of the disease."

"There was never a doubt that RTT is a complex disease. However, we now propose that its molecular etiology is also complex: MECP2, the gene mutated in RTT, encodes a protein involved in controlling not only the quantity, but also the quality of the protein repertoire of the cell. Thus, we believe that our findings should modify the framework for the identification of key players in RTT pathogenesis by adding mis-spliced genes to the challenge," said Juan Young, first author of the paper.

Since its inception in late 1999, RSRF has become the largest private source of funds for RTT research in the world. "Mutations in the MECP2 gene can lead not only to RTT but also to autism and a variety of other mental disorders. This newly discovered role of MECP2 might therefore hold broad implications for understanding these devastating disorders and point to much needed treatments," stated Monica Coenraads, co-founder and Director of Research for RSRF.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>